Skip to content
Snippets Groups Projects
Commit 495c2b53 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 5_atoms_and_lcao_solutions.md - typo

parent a704a55f
Branches
No related tags found
No related merge requests found
Pipeline #91249 passed
......@@ -99,15 +99,15 @@ $$
$$
From this we find
$$
beta = -\frac{E_\pm- E_0 + \gamma}{t}\alpha = -\frac{\pm\sqrt{t^2+\gamma^2}}{t}
\beta = -\frac{E_\pm- E_0 + \gamma}{t}\alpha = -\frac{\pm\sqrt{t^2+\gamma^2}}{t}\alpha
$$
Then, using the normalization condition $\alpha^2+\beta^2$=1, we find the normalized eigenfunction.
The ground state wave function is:
$$
|\psi⟩ &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1⟩+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2⟩
\end{split}
$$
%The ground state wave function is:
%$$
% |\psi⟩ &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1⟩+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2⟩
% \end{split}
%$$
#### Question 4.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment