Skip to content
Snippets Groups Projects
Commit 54f2bd5f authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

Solutions to the LCAO model

parent d0544bcc
Branches
No related tags found
No related merge requests found
Pipeline #28949 passed
# Solutions for LCAO model exercises
### Question 1
1. See lecture notes\newline
2. The atomic number of Tungsten is 74:
\begin{equation*}
1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^4
\end{equation*}
3.
\begin{equation*}
\begin{split}
Cu &= [Ar]4s^23d^9\\
Pd &= [Kr]5s^24d^8\\
Ag &= [Kr]5s^24d^9\\
Au &= [Xe]6s^24f^145d^9
\end{split}
\end{equation*}
## Question 2
1.
\begin{equation*}
\psi(x) =
\begin{cases}
&\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\
&\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1
\end{cases}
\end{equation*}
Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$.
The energy is given by $\epsilon1 = \epsilon2 = -\frac{mV_0}{\hbar^2}$
The wavefunction of a single delta peak is given by
\begin{equation*}
\psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|}
\end{equation*}
$\psi_2(x)$ can be found by replacing $x_1$ by $x_2$
2.
\begin{equation*}
H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix}
1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
\exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\
\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1))
\end{pmatrix}
\end{equation*}
3.
\begin{equation*}
\epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha})
\end{equation*}
Where $\beta = -\frac{mV_0^2}{\hbar^2}$ and $\alpha = \frac{mV_0}{\hbar^2}(x_2-x_1)$
### Question 3
1.
\begin{equation*}
H_{\mathcal{E}} = eRE
\end{equation*}
Where R is the distance between the negatively charged electrons and the positive charged nuclei.
2.
\begin{equation*}
H_{eff} = \begin{pmatrix}
E_0 - \gamma & -t\\
-t & E_0 + \gamma
\end{pmatrix}
\end{equation*}
Where $\gamma = e d \mathcal{E}/2$ and where we have used that $$<1|H_{eff}|1> = -e d \mathcal{E}/2<1|1> = e d \mathcal{E}/2$$
3.
The eigenstates of the Hamiltonian are given by:
\begin{equation*}
E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2}
\end{equation*}
The wavefunction corresponding to the ground state energie is:
\begin{equation*}
\begin{split}
|\psi> &= \frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}\begin{pmatrix}
\frac{\gamma+\sqrt{t^2+\gamma^2}}{t}\\
1
\end{pmatrix}\\
|\psi> &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1>+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2>
\end{split}
\end{equation*}
4.
\begin{equation*}
P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}})
\end{equation*}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment