Skip to content
Snippets Groups Projects
Commit 598e14b2 authored by Kostas Vilkelis's avatar Kostas Vilkelis :flamingo:
Browse files

show solution 10

parent bfa1a3e7
No related branches found
No related tags found
No related merge requests found
Pipeline #30788 passed
...@@ -44,7 +44,7 @@ nav: ...@@ -44,7 +44,7 @@ nav:
- Tight-binding model: '7_tight_binding_model_solutions.md' - Tight-binding model: '7_tight_binding_model_solutions.md'
- Many atoms per unit cell: '8_many_atoms_solutions.md' - Many atoms per unit cell: '8_many_atoms_solutions.md'
- Crystal structure: '9_crystal_structure_solutions.md' - Crystal structure: '9_crystal_structure_solutions.md'
# - X-ray diffraction: '10_xray_solutions.md' - X-ray diffraction: '10_xray_solutions.md'
# - Nearly free electron model: '11_nearly_free_electron_model_solutions.md' # - Nearly free electron model: '11_nearly_free_electron_model_solutions.md'
# - Band structures in 2D: '12_band_structures_in_higher_dimensions_solutions.md' # - Band structures in 2D: '12_band_structures_in_higher_dimensions_solutions.md'
# - Basic principles: '13_semiconductors_solutions.md' # - Basic principles: '13_semiconductors_solutions.md'
......
...@@ -77,7 +77,7 @@ Since $\rho=d / V$, we must maximize $d$. To do that, we must minimize $|G|$ (Su ...@@ -77,7 +77,7 @@ Since $\rho=d / V$, we must maximize $d$. To do that, we must minimize $|G|$ (Su
## Exercise 3: X-ray scattering in 2D ## Exercise 3: X-ray scattering in 2D
### Subquestion 1 ### Subquestion 1
``` ```python
def reciprocal_lattice(N = 7, lim = 40): def reciprocal_lattice(N = 7, lim = 40):
y = np.repeat(np.linspace(-18.4*(N//2),18.4*(N//2),N),N) y = np.repeat(np.linspace(-18.4*(N//2),18.4*(N//2),N),N)
x = np.tile(np.linspace(-13.4*(N//2),13.4*(N//2),N),N) x = np.tile(np.linspace(-13.4*(N//2),13.4*(N//2),N),N)
...@@ -103,7 +103,7 @@ $k = \frac{2 \pi}{\lambda} = 37.9 nm^{-1}$ ...@@ -103,7 +103,7 @@ $k = \frac{2 \pi}{\lambda} = 37.9 nm^{-1}$
Note that $|k| = |k'| = k $ since elastic scatering Note that $|k| = |k'| = k $ since elastic scatering
``` ```python
reciprocal_lattice() reciprocal_lattice()
# G vector # G vector
plt.arrow(0,0,13.4*2,18.4,color='r',zorder=10,head_width=2,length_includes_head=True) plt.arrow(0,0,13.4*2,18.4,color='r',zorder=10,head_width=2,length_includes_head=True)
...@@ -144,15 +144,9 @@ $$ ...@@ -144,15 +144,9 @@ $$
### Subquestion 4 ### Subquestion 4
For FCC, the structure factor is the following: Due to bcc systematic absences, the peaks from lowest to largest angle are:
$(110),(200),(211), (220), (310)$
### Subquestion 5
$S_\mathbf{G} = $ $a = 2.9100 \unicode{xC5}$
$$
\begin{cases}
4f & \text{if $h,k,l$ are all odd or even}\\
0 & \text{if otherwise}
\end{cases}
$$
Since $(110)$ have mixed odd and even indices, no diffraction peak will be observed on FCC. For BCC, however, $(110)$ gives $1+1+0 = 2$ even number, so there will be diffraction.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment