Skip to content
Snippets Groups Projects
Commit 5cbca405 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

updates some solutions

parent 3b2b1f61
No related branches found
No related tags found
1 merge request!102lecture_9_solutions
Pipeline #56778 passed
......@@ -20,7 +20,7 @@ $$
\mathbf{a}_3 &= \frac{a}{2}(\mathbf{\hat{y}} + \mathbf{\hat{z}}).
\end{align}
$$
With respect to the conventional unit cell, the basis in fractional coordinates is $\bigcirc(0,0,0)$, $\bigcirc(1,0,0)$, $\bigcirc(0,1,0)$ and $\bigcirc(0,0,1)$.
With respect to the conventional unit cell, the basis in fractional coordinates is $\bigcirc(1/2,1/2,0)$, $\bigcirc(1/2,0,1/2)$, $\bigcirc(0,1/2,1/2)$ and $\bigcirc(0,0,0)$.
With respect to the primitive unit cell, the basis is $\bigcirc(0,0,0)$.
Let us now consider the BCC lattice.
The primitive lattice vectors are
......@@ -31,7 +31,7 @@ $$
\mathbf{a}_3 &= a\mathbf{\hat{y}}.
\end{align}
$$
The basis of the conventional unit cell is $\bigcirc(0,0,0)$ and $\bigcirc(1,0,0)$.
The basis of the conventional unit cell is $\bigcirc(0,0,0)$ and $\bigcirc(1/2,1/2,1/2)$.
For the primitive unit cell the basis is $\bigcirc(0,0,0)$.
3.
......@@ -77,17 +77,17 @@ $$
\mathbf{a_1} = a \hat{\mathbf{x}}, \quad \mathbf{a_2} = a \hat{\mathbf{y}}.
$$
With respect to the primitive lattice vectors, the basis is
$$
\Huge \bullet \normalsize(0,0), \quad \bigcirc(\frac{1}{2},\frac{1}{2}).
$$
$
\huge \bullet \normalsize(0,0), \quad \bigcirc(\frac{1}{2},\frac{1}{2}).
$
4.
The lattice is a cubic lattice.
The basis of the crystal is
$$
\Huge \bullet \normalsize = (0,0,0), \quad \bigcirc = (\frac{1}{2},\frac{1}{2},\frac{1}{2}).
$$
$
\huge \bullet \normalsize(0,0,0), \quad \bigcirc(\frac{1}{2},\frac{1}{2},\frac{1}{2}).
$
An example of such a material is Cesium Chloride (CsCl)
......@@ -106,9 +106,11 @@ $$
The conevtional unit cell of diamond consists out of two shifted fcc lattices.
One set of primitive lattice vectors is
$$
\mathbf{a_1} = \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{y}} \right) \\
\mathbf{a_2} = \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{z}} \right) \\
\mathbf{a_3} = \frac{a}{2} \left(\hat{\mathbf{y}}+\hat{\mathbf{z}} \right).
\begin{align}
\mathbf{a_1} &= \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{y}} \right) \\
\mathbf{a_2} &= \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{z}} \right) \\
\mathbf{a_3} &= \frac{a}{2} \left(\hat{\mathbf{y}}+\hat{\mathbf{z}} \right).
\end{align}
$$
The volume of the primitive unit cell is
$$
......@@ -120,7 +122,7 @@ The primitive unit cell contains 2 atoms.
With respect to the set of primitive lattcie vectors, the basis is $ \mathrm{C}(0,0,0)$ and $\mathrm{C}(\frac{1}{4},\frac{1}{4},\frac{1}{4})$.
3.
One FCC lattice has 4 atoms.
One FCC lattice contains 4 atom.
Because the diamond conventional unit cell contains two shifted FCC lattices, it will contain 8 atoms.
The volume of the conventional unit cell is $V = a^3$.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment