Skip to content
Snippets Groups Projects
Commit 6a44fed1 authored by Lars kleyn Winkel's avatar Lars kleyn Winkel
Browse files

Update src/7_tight_binding_model_sol.md

parent fe5d964c
Branches
No related tags found
1 merge request!58Solutions lecture 7
Pipeline #27974 passed
......@@ -69,8 +69,9 @@ For the energy we have: $$U = \int \hbar \omega g(\omega) (n(\omega,T) + \frac{1
### Subquestion 2
For the heat capacity we have: $$C = \frac{\partial U}{\partial T} = \int g(\omega) \hbar\omega \frac{\partial n(\omega,T)}{\partial T}d\omega$$
For the heat capacity we have: $$C = \frac{\partial U}{\partial T} = \int \hbar\omega g(\omega) \frac{\partial n(\omega,T)}{\partial T}d\omega$$
## Exercise 3: Next-nearest neighbors chain
### Subquestion 1
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment