Skip to content
Snippets Groups Projects
Commit 6ef0d908 authored by Anton Akhmerov's avatar Anton Akhmerov
Browse files

formatting

parent df5c232e
No related branches found
No related tags found
1 merge request!104lecture 10 solutions
Pipeline #57466 passed
......@@ -145,21 +145,23 @@ plt.show()
$S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)})$
2. Solving for $h$, $k$, and $l$ results in
$$
S(\mathbf{G}) =
\begin{cases}
42, \: \text{if $h+k+l$ is even}\\
2f, \: \text{if $h+k+l$ is even}\\
0, \: \text{if $h+k+l$ is odd}.
\end{cases}
$$
Thus if $h+k+l$ is odd, diffraction peaks dissapear
3. Let $f_1 \neq f_2$, then
$$
S(\mathbf{G}) =
\begin{cases}
f_1 + f_2, \mathrm{if $h+k+l$ is even}\\
f_1 - f_2, \mathrm{if $h+k+l$ is odd}
f_1 + f_2, \text{if $h+k+l$ is even}\\
f_1 - f_2, \text{if $h+k+l$ is odd}
\end{cases}
$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment