Skip to content
Snippets Groups Projects
Commit 6f390704 authored by T. van der Sar's avatar T. van der Sar
Browse files

Merge branch 'master' into local

parents 2bbe4e5f b8b4005c
Branches
No related tags found
1 merge request!65Crystal structure changes
Pipeline #27978 passed
......@@ -235,7 +235,7 @@ $$
\langle E \rangle=\frac{1}{2}\hbar\omega_0+\frac{\hbar\omega_0}{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}-1}
$$
The left plot below shows the Bose-Einstein distribution vs energy. We see that low-energy states are more likely to be occupied than high-energy states. The right plot shows the increasing thermal energy in the oscillator for increasing temperature and highlights the zero-point energy $\hbar\omega_0/2$ that remains in the oscillator at $T=0$ (a consequence of the uncertainty principle). Moreover, we see that the energy in the oscillator is approximately constant when $k_{\rm B}T<\hbar \omega_0$. I.e., the heat capacity becomes small for $k_{\rm B}T<\hbar \omega_0$ and goes to zero when $T\rightarrow0$.
The left plot below shows the Bose-Einstein distribution vs energy. We see that low-energy states are more likely to be occupied than high-energy states. The right plot shows the increasing thermal energy in the oscillator for increasing temperature and highlights the zero-point energy $\hbar\omega_0/2$ that remains in the oscillator at $T=0$ (a consequence of the uncertainty principle). Moreover, we see that the energy in the oscillator becomes approximately constant when $k_{\rm B}T\ll\hbar \omega_0$. This implies that the heat capacity becomes small when $k_{\rm B}T<\hbar \omega_0$ and goes to zero when $T\rightarrow0$.
```python
xline = [1, 1];
......@@ -263,7 +263,7 @@ ax2.set_ylabel(r"$\langle E \rangle$")
ax2.set_yticks([1/2])
ax2.set_yticklabels([r'$\hbar\omega_0/2$'])
draw_classic_axes(ax2, xlabeloffset=.15)
ax2.text(1.05, 0.95, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r');
ax2.text(1.05, 0.75, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r');
```
We now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\langle E \rangle$ with respect to $T$.
......@@ -277,7 +277,7 @@ C = \frac{\partial\langle E \rangle}{\partial T}
$$
There is still one step to do, rewriting this equation more elegantly:
$$
C = k_b \left(\frac{T_E}{T}\right)^2\frac{e^{T_E/T}}{(e^{T_E/T} - 1)^2)},
C = k_b \left(\frac{T_E}{T}\right)^2\frac{e^{T_E/T}}{(e^{T_E/T} - 1)^2},
$$
where we introduce the *Einstein temperature* $T_E \equiv \hbar \omega_0 / k_B$.
This is a characteristic temperature when the thermal excitations "freeze out" in the harmonic oscillator.
......@@ -289,7 +289,7 @@ def c_einstein(T, T_E=1):
return 3 * x**2 * np.exp(x) / (np.exp(x) - 1)**2
xline = [1, 1];
yline = [0, 1.5];
yline = [0, 1.1];
temps = np.linspace(0.01, 1.5, 500)
fig, ax = pyplot.subplots()
......@@ -305,7 +305,7 @@ ax.set_yticks([1])
ax.set_yticklabels(['$k_B$'])
pyplot.hlines([1], 0, 1.5, linestyles='dashed')
draw_classic_axes(ax)
ax.text(1.05, 0.95, r'$k_{\rm B}T = \hbar \omega$', ha='left', color='r');
ax.text(1.01, 0.5, r'$k_{\rm B}T = \hbar \omega$', ha='left', color='r');
```
The dashed line is the classical value, $k_{\rm B}$.
......@@ -332,8 +332,10 @@ ax.set_ylim((0, 3));
## Conclusions
1. The law of Dulong–Petit is an observation that all materials have $C≈3k_B$ per atom.
2. Oscillations of atoms are *quantum*, and they *freeze* at a low temperature, leaving only zero-point motion
3. Using Bose–Einstein distribution we explain how $C$ drops with $T$.
2. Oscillations of atoms are *quantum*, and they *freeze out* when $k_BT \\ \hbar \omega_0$, leaving only zero-point motion.
3. The Einstein model describes each atom in a solid as a quantum harmonic oscillator.
4. Using the Bose–Einstein distribution, we derived the thermal energy and heat capacity per atom in the Einstein model.
5. The Eisntein model correctly predicts that the heat capacity drops to 0 as $T\rightarrow 0$.
## Exercises
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment