Skip to content
Snippets Groups Projects
Commit 84cf61be authored by Radoica Draškić's avatar Radoica Draškić
Browse files

Add solutions to Einstein and Debye model.

parent ab4ae352
No related branches found
No related tags found
1 merge request!51Update src/solutions/1_einstein_model.md, mkdocs.yml files
Pipeline #27780 passed
......@@ -32,9 +32,8 @@ nav:
- Fermi surface periodic table: 'fermi_surfaces.md'
- Extra exercises: 'extra_exercises.md'
- Solutions:
- Lecture 0: '1_einstein_model_solutions.md'
- Lecture 1: '1_einstein_model_sol.md'
- Lecture 2: '2_debye_model_sol.md'
- Einstein model: '1_einstein_model_solutions.md'
- Debye model: '2_debye_model_solutions.md'
theme:
name: material
......
# Solutions for lecture 2 exercises
### Exercise 1: Debye model: concepts.
1, 2, 3.
Look at the lecture notes.
4.
$$
g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega} = \frac{1}{v}\frac{dN}{dk}.
$$
We assume that in $d$ dimensions there are $d$ polarizations.
For 1D we have that $N = \frac{L}{2\pi}\int dk$, hence $g(\omega) = \frac{L}{2\pi v}$.
For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$.
For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi kdk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$.
### Exercise 2: Debye model in 2D.
1.
Look at the lecture notes.
2.
$$
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant}.
$$
3.
High temperature implies $\beta \rightarrow 0$, hence $E = \frac{L^2}{\pi v^2\hbar^2\beta^3}\frac{(\beta\hbar\omega_D)^2}{2} + T \text{ independent constant}$, and then $C = \frac{k_BL^2\omega^2_D}{2\pi v^2} = 2Nk_B$. We've used the value for $\omega_D$ calculated from $2N = \int_{0}^{\omega_D}g(\omega)d\omega$.
4.
In the low temperature limit we have that $\beta \rightarrow \infty$, hence $E \approx \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant} = \frac{2\zeta(3)L^2}{\pi v^2\hbar^2\beta^3} + T \text{ independent constant}$. Finally $C = \frac{6\zeta(3)k^3_BL^2}{\pi v^2\hbar^2}T^2$. We used the fact that $\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx = 2\zeta(3)$ where $\zeta$ is the Riemann zeta function.
### Exercise 3: Different phonon modes.
1.
$$
g(\omega) = \sum_{\text{polarizations}}\frac{dN}{dk}\frac{dk}{d\omega} = \left(\frac{L}{2\pi}\right)^3\sum_{\text{polarizations}}4\pi k^2\frac{dk}{d\omega} = \frac{L^3}{2\pi^2}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\omega^2
$$
$$
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + T \text{ independent constant}.
$$
2.
Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$.
3.
In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
### Exercise 4: Anisotropic sound velocities.
$$
E = 3\left(\frac{L}{2\pi}\right)^3\int d^3k\hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) = 3\left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int d^3\kappa\frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part},
$$
where we used the substitutions $\kappa_x = k_xv_x,\kappa_y = k_yv_y, \kappa_z = k_zv_z$. Finally
$$
E = \frac{3\hbar L^3}{2\pi^2}\frac{1}{v_xv_yv_z}\int_0^{\kappa_D} d\kappa\frac{\kappa^3}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part} = \frac{3L^3}{2\pi^2\hbar^3\beta^4}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1} + T \text{ independent part},
$$
hence $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1}$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_y$ instead of $1/v^3$.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment