Skip to content
Snippets Groups Projects
Commit 85564725 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

updates numbered lists

parent 10257611
No related branches found
No related tags found
1 merge request!96Lecture 4 solutions
Pipeline #52157 passed
......@@ -64,17 +64,14 @@ $$
$$
2g(k)dk = g(E)dE
$$
$$
g(E)=2g(k(E))\frac{dk}{dE}
$$
$$
g(E) = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m_e}{2\pi}}\right)^n (E)^{\frac{n}{2}-1}
$$
6.
$$
N = \int_{0}^{\infty}g(E)f(E)dE = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m_e}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(E)^{\frac{n}{2}-1}}{e^{\frac{E-\mu}{k_BT}}+1}dE
$$
......@@ -140,7 +137,7 @@ Check the source code written in python for solving integral using midpoint rule
### Exercise 4: graphene
1.
1.
```python
import numpy as np
......@@ -166,7 +163,7 @@ ax.yaxis.set_label_coords(0.5,1)
ax.xaxis.set_label_coords(1.0, 0.49)
```
2. The DOS for the positive energies is given by
2.The DOS for the positive energies is given by
$$
g(\epsilon) = (2_s + 2_v) 2 \pi \left(\frac{L}{2 \pi}\right)^2 \frac{\epsilon}{c^2},
$$
......@@ -176,7 +173,7 @@ $$
g(\epsilon) = (2_s + 2_v) 2 \pi \left(\frac{L}{2 \pi}\right)^2 \frac{|\epsilon|}{c^2}.
$$
3. $g(\epsilon)$ vs $\epsilon$ is a linear plot. Here, the region marked by $-k_B T$ is a triangle whose area gives the number of electrons that can be excited:
3.$g(\epsilon)$ vs $\epsilon$ is a linear plot. Here, the region marked by $-k_B T$ is a triangle whose area gives the number of electrons that can be excited:
$$
\begin{align}
n_{ex} &= \frac{1}{2} g(-k_B T) k_B T\\
......@@ -188,7 +185,7 @@ $$
E(T) - E_0 = \frac{L^2 k_B^3T^3}{\pi c^2}.
$$
4.
4.
$$
C_v(T) = \frac{\partial E}{\partial T} = \frac{3L^2k_B^3T^2}{\pi c^2}
$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment