We compute the density of states separately for each band and add the result. Note that for the first band there will be no states below $\varepsilon <0$ and for the second band no states below $\varepsilon<\varepsilon_0$.
\begin{align}
N_{1,states} &= 2_s (\frac{L}{2\pi})^2 2\pi \int k \textrm{d}k \\
N = \int_\varepsilon_a^\infty g(\varepsilon) n_F(\beta(\varepsilon-E_F)) \textrm{d}\varepsilon
$$
#### Question 5.
In this case the Fermi-Dirac can be approximated by $n_F(\beta(\varepsilon-E_F)) \approx e^{-\beta (\varepsilon-E_F)}$, and working out the integral we obtain
$$
N = 2_s (\frac{L}{2\pi})^2 \frac{2\pi}{A} \int_{varepsilon_a}^\infty e^{-\beta (\varepsilon-E_F)} \textrm{d}\varepsilon = 2_s (\frac{L}{2\pi})^2 \frac{2\pi}{A} k_B T e^{-\beta (\varepsilon_a-E_F)}
$$
## extra exercises
### Exercise 1: the n-dimensional free electron model