Skip to content
Snippets Groups Projects
Commit 87fe0894 authored by Pim Vree's avatar Pim Vree
Browse files

Replace 4_sommerfeld_model_solutions.md

parent 6b334c34
Branches
No related tags found
No related merge requests found
Pipeline #134328 passed
......@@ -130,7 +130,66 @@ $$
C_v(T) = \frac{\partial E}{\partial T} = \frac{3L^2k_B^3T^2}{\pi c^2}
$$
### Exercise 4: Two energy bands
#### Question 1.
```python
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 100)
fig, ax = plt.subplots(figsize=(7, 5))
ax.plot(x, x**2, 'b')
ax.plot(x, x**2 + -0.2, 'b')
ax.axhline(y=0.5, color='r', linestyle='-')
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position(('data', 0.0))
# Eliminate upper and right axes
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(r'$\mid \vec k \mid$', fontsize=14)
ax.set_ylabel(r'$\varepsilon$', fontsize=18, rotation='horizontal')
ax.yaxis.set_label_coords(0.5,1)
ax.xaxis.set_label_coords(1.0, 0.49)
```
#### Question 2.
We compute the density of states separately for each band and add the result. Note that for the first band there will be no states below $\varepsilon <0$ and for the second band no states below $\varepsilon<\varepsilon_0$.
\begin{align}
N_{1,states} &= 2_s (\frac{L}{2\pi})^2 2\pi \int k \textrm{d}k \\
&= 2_s (\frac{L}{2\pi})^2 2\pi \int sqrt{\frac{\varepsilon}{A}} \frac{1}{2}\sqrt{\frac{1}{\varepsilon A}} \textrm{d}\varepsilon\\
g_1(\varepsilon) = 2_s (\frac{L}{2\p})^2 \frac{\pi}{A}\\
N_{2,states} &= 2_s (\frac{L}{2\pi})^2 2\pi \int k \textrm{d}k \\
&= 2_s (\frac{L}{2\pi})^2 2\pi \int sqrt{\frac{\varepsilon-varepsilon_0}{A}} \frac{1}{2}\sqrt{\frac{1}{varepsilon-varepsilon_0 A}} \textrm{d}\varepsilon\\
g_2(\varepsilon) &= 2_s (\frac{L}{2\pi})^2 \frac{\pi}{A}
\end{align}
$$
g(\varepsilon) =\begin{cases}
2_s (\frac{L}{2\pi })^2 \frac{\pi}{A} &\text{for}&0<\varepsilon<\varepsilon_0 \\
2_s (\frac{L}{2\pi })^2 \frac{2\pi}{A} &\text{for}&\varepsilon>\varepsilon_0
\end{cases}
$$
#### Question 3.
Add $T = 0$ the chemical potential $\mu$ is equal to the Fermi energy $E_F$ and the Fermi-Dirac distributionis the step function
$$
N &= \int_0^\infty g(\varepsilon) n_F(\beta(\varepsilon-E_F)) \textrm{d}\varepsilon \\
&= \int_0^{\varepsilon_0} g(\varepsilon) \textrm{d}\varepsilon + \int^{E_F}_{\varepsilon_0} g(\varepsilon) \textrm{d}\varepsilon
&= 2_s (\frac{L}{2\pi})^2 \frac{\pi}{A} \varepsilon_0 + 2_s (\frac{L}{2\pi})^2 \frac{2\pi}{A} (E_F-\varepsilon_0)
&= 2_s (\frac{L}{2\pi})^2 \frac{\pi}{A} (2E_F -\varepsilon_0)
$$
#### Question 4.
$$
N = \int_\varepsilon_a^\infty g(\varepsilon) n_F(\beta(\varepsilon-E_F)) \textrm{d}\varepsilon
$$
#### Question 5.
In this case the Fermi-Dirac can be approximated by $n_F(\beta(\varepsilon-E_F)) \approx e^{-\beta (\varepsilon-E_F)}$, and working out the integral we obtain
$$
N = 2_s (\frac{L}{2\pi})^2 \frac{2\pi}{A} \int_{varepsilon_a}^\infty e^{-\beta (\varepsilon-E_F)} \textrm{d}\varepsilon = 2_s (\frac{L}{2\pi})^2 \frac{2\pi}{A} k_B T e^{-\beta (\varepsilon_a-E_F)}
$$
## extra exercises
### Exercise 1: the n-dimensional free electron model
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment