Skip to content
Snippets Groups Projects
Commit 9c11feab authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 1_einstein_model.md - notation

parent 17386052
No related branches found
No related tags found
No related merge requests found
Pipeline #27959 passed
......@@ -269,17 +269,17 @@ ax.text(1.05, 0.95, r'$k_{\rm B}T=\hbar \omega_0 =$', ha='left', color='r');
We now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\langle E \rangle$ with respect to $T$.
$$
\begin{multline}
C = \frac{\partial\bar{\varepsilon}}{\partial T}
= -\frac{\hbar\omega}{\left({\rm e}^{\hbar\omega/k_{\rm B}T}-1\right)^2}\frac{\partial}{\partial T}\left({\rm e}^{\hbar\omega/k_{\rm B}T}-1\right)\\
= \frac{\hbar^2\omega^2}{k_{\rm B}T^2}\frac{ {\rm e}^{\hbar\omega/k_{\rm B}T}}{\left({\rm e}^{\hbar\omega/k_{\rm B}T}-1\right)^2}
=k_{\rm B}\left(\frac{\hbar\omega}{k_{\rm B}T}\right)^2\frac{ {\rm e}^{\hbar\omega/k_{\rm B}T}}{\left({\rm e}^{\hbar\omega/k_{\rm B}T}-1\right)^2}
C = \frac{\partial\langle E \rangle{\partial T}
= -\frac{\hbar\omega_0}{\left({\rm e}^{\hbar\omega_0/k_{\rm B}T}-1\right)^2}\frac{\partial}{\partial T}\left({\rm e}^{\hbar\omega_0/k_{\rm B}T}-1\right)\\
= \frac{\hbar^2\omega_0^2}{k_{\rm B}T^2}\frac{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}}{\left({\rm e}^{\hbar\omega_0/k_{\rm B}T}-1\right)^2}
=k_{\rm B}\left(\frac{\hbar\omega_0}{k_{\rm B}T}\right)^2\frac{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}}{\left({\rm e}^{\hbar\omega_0/k_{\rm B}T}-1\right)^2}
\end{multline}
$$
There is still one step to do, rewriting this equation more elegantly:
$$
C = k_b \left(\frac{T_E}{T}\right)^2\frac{e^{T_E/T}}{(e^{T_E/T} - 1)^2)},
$$
where we introduce the *Einstein temperature* $T_E \equiv \hbar \omega / k_B$.
where we introduce the *Einstein temperature* $T_E \equiv \hbar \omega_0 / k_B$.
This is a characteristic temperature when the thermal excitations "freeze out" in the harmonic oscillator.
Consequently, it is also the temperature scale when the heat capacity of an Einstein solid starts significantly decreasing.
......@@ -306,9 +306,9 @@ draw_classic_axes(ax)
```
The dashed line is the classical value, $k_{\rm B}$.
Shaded area $=\frac{1}{2}\hbar\omega$, the zero point energy that cannot be removed through cooling.
Shaded area $=\frac{1}{2}\hbar\omega_0$, the zero point energy that cannot be removed through cooling.
This is for just one atom. In order to obtain the heat capacity of a full material, we would have to multiply $C$ (or $\bar{\varepsilon}$) by $3N$, _i.e._ the number of harmonic oscillators according to Einstein model.
This is for just one atom. In order to obtain the heat capacity of a full material, we would have to multiply $C$ (or $\langle E \rangle$) by $3N$, _i.e._ the number of harmonic oscillators according to Einstein model.
```python
fit = curve_fit(c_einstein, T, c, 1000)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment