Skip to content
Snippets Groups Projects
Commit 9fa876c6 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

Added a slider to the plot of the heat capacity of the Einstein model and the...

Added a slider to the plot of the heat capacity of the Einstein model and the classical equipartition theorem. The slider allows one to play around with the Einstein temperature and it ranges from 0.1 to 2.
parent c8be2d01
No related branches found
No related tags found
1 merge request!85lecture_1
Pipeline #47704 passed
......@@ -21,7 +21,7 @@ from scipy.optimize import curve_fit
from scipy.integrate import quad
import plotly.offline as py
import plotly.graph_objs as go
from ipywidgets import interact, FloatSlider, Layout
from common import draw_classic_axes, configure_plotting
......@@ -304,30 +304,49 @@ where we have introduced the *Einstein temperature* $T_E \equiv \hbar \omega_0 /
This is the characteristic temperature for which the thermal excitations "freeze out" in the harmonic oscillator. This means that there is not enough thermal energy to excite the harmonic oscillators into an excited state, which leaves them in the ground state. Consequently, it is also the temperature scale for which the heat capacity of an Einstein solid starts significantly decreasing. We also observe that the Einstein temperature depends on the eigenfrequency $\omega_0$. As different materials have a different eigenfrequency $\omega_0$, the Einstein temperature is a material-dependent parameter.
```python
def c_einstein(T, T_E=1):
# Defining variables
y_line = [0, 0.92];
x_max = 2.5
temps = np.linspace(0.01, x_max, 750)
def c_einstein(T, T_E):
x = T_E / T
return 3 * x**2 * np.exp(x) / (np.exp(x) - 1)**2
xline = [1, 1];
yline = [0, 1.1];
temps = np.linspace(0.01, 1.5, 500)
fig, ax = pyplot.subplots()
pyplot.hlines([1], 0, 1.5, linestyles='dashed', label = r'Classical')
ax.plot(temps, c_einstein(temps)/3, '-', label = r'Einstein model')
ax.plot(xline, yline, 'r--')
ax.fill_between(temps, c_einstein(temps)/3, 1, alpha=0.5)
ax.set_title('Heat capacity for the Einstein model and the equipartition theorem')
ax.set_ylim(bottom=0, top=1.2)
ax.set_xlabel('$T$')
ax.set_ylabel(r'$C$')
ax.set_xticks([0])
ax.set_xticklabels(['$0$'])
ax.set_yticks([1])
ax.set_yticklabels(['$k_B$'])
draw_classic_axes(ax)
ax.text(1.01, 0.5, r'$T= T_E= \hbar \omega_0/k_{\rm B}$', ha='left', color='r')
ax.legend(loc = 'lower right')
fig.show();
def einstein_temp_plot(T_E):
# Creating plot
fig, ax = pyplot.subplots(figsize = (12, 9))
pyplot.hlines([1], 0, x_max, linestyles = 'dashed', label = r'Classical')
ax.plot(temps, c_einstein(temps, T_E)/3, '-', label = r'Einstein model')
ax.plot([T_E, T_E], y_line, 'r--')
ax.fill_between(temps, c_einstein(temps, T_E)/3, 1, alpha = 0.5)
ax.set_title('Heat capacity of the Einstein model and the equipartition theorem')
ax.set_ylim(bottom = 0, top = 1.2)
ax.set_xlabel('$T$')
ax.set_ylabel(r'$C$')
ax.set_xticks([0])
ax.set_xlim((0, x_max))
ax.set_xticklabels(['$0$'])
ax.set_yticks([1])
ax.set_yticklabels(['$k_B$'])
ax.text(T_E+0.05, 0.5, r'$T= T_E= \hbar \omega_0/k_{\rm B}$', ha='left', color='r')
ax.legend(loc = 'lower right')
pyplot.show()
return()
# Creating the slider
layout_slider = Layout(width = '725px', height = '20px')
float_slider = FloatSlider(
value = 1,
min = 0.1, max = 2, step = 0.05,
description = r'$T_E$',
continuous_update = True,
orientation = 'horizontal',
readout_format = '.1f',
layout = layout_slider)
# Creating the plot
control = interact(einstein_temp_plot, T_E = float_slider)
```
The horizontal dashed line is the classical value, $k_{\rm B}$. The shaded area is the difference between the classical value $k_B$ and the value predicted by the Einstein model. Integrating over the shaded area yields $\frac{1}{2}\hbar\omega_0$, which is the zero-point energy of the oscillator, which cannot be extracted from the system. The vertical dashed line depicts the Einstein temperature $T_E$, at which the heat capacity $C \approx 0.92 k_B$.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment