Skip to content
Snippets Groups Projects
Commit a174bc55 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 13_semiconductors.md

parent cb963e85
Branches
No related tags found
No related merge requests found
Pipeline #39807 failed
...@@ -189,7 +189,7 @@ $$ g(E_h) = (2m_h)^{3/2}\sqrt{E_h+E_v}/2\pi^2\hbar^3$$ ...@@ -189,7 +189,7 @@ $$ g(E_h) = (2m_h)^{3/2}\sqrt{E_h+E_v}/2\pi^2\hbar^3$$
Applying the algorithm: Applying the algorithm:
$$n_h = \int_{-E_v}^\infty f(E+E_F)g_h(E+E_v)dE = \int_{-E_v}^\infty\frac{(2m_h)^{3/2}}{2\pi^2\hbar^3} \sqrt{E+E_v}\frac{1}{e^{(E+E_F)/kT}+1}dE$$ $$n_h = \int_{-E_v}^\infty f(E+E_F)g_h(E+E_v)dE = \int_{-E_v}^\infty\frac{(2m_h)^{3/2}}{2\pi^2\hbar^3}\sqrt{E+E_v}\frac{1}{e^{(E+E_F)/kT}+1}dE$$
$$n_e = \int_{E_G}^\infty f(E-E_F)g_e(E)dE = \int_{E_G}^\infty\frac{(2m_e)^{3/2}}{2\pi^2\hbar^3} \sqrt{E-E_G}\frac{1}{e^{(E-E_F)/kT}+1}dE$$ $$n_e = \int_{E_G}^\infty f(E-E_F)g_e(E)dE = \int_{E_G}^\infty\frac{(2m_e)^{3/2}}{2\pi^2\hbar^3} \sqrt{E-E_G}\frac{1}{e^{(E-E_F)/kT}+1}dE$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment