@@ -81,7 +81,37 @@ Notice that the red shaded area is not a part of the *Band structure* anymore!
### Subquestion 5
Both $v_g$ and $m_{eff}$ can be calculated using the respective
Both $v_g$ and $m_{eff}$ can be calculated using the respective formulae given in the previous lectures
### Subquestion 6
We know $g(\omega) = \frac{dN}{dk} \frac{dk}{d\omega} = \frac{L}{2\pi} \frac{1}{v_g}$ with $v_g$ from the previous subquestion. Graphically the density of states looks accordingly:
```python
pyplot.subplot(1,2,1)
k=np.linspace(-2*pi,2*pi,400)
t1=1;
t2=1.5;
pyplot.plot(k,-(t1+t2)*np.cos(k/2),'r',label='1 atom dispersion')
pyplot.plot(k[199:100:-1],-(t1+t2)*np.cos(k[0:99]/2),'r--',label='1 atom dispersion with folded Brillouin zone')