Skip to content
Snippets Groups Projects
Commit b5e6199f authored by T. van der Sar's avatar T. van der Sar
Browse files

Merge branch 'master' into local

parents 039a52d2 320704a9
Branches
No related tags found
1 merge request!65Crystal structure changes
Pipeline #27894 passed
......@@ -232,17 +232,17 @@ n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}
$$
The Bose-Einstein distribution describes the occupation probability of a state at a given energy $\hbar \omega$. Using the Bose-Einstein distribution, we can calculate the expectation value of the energy stored in the oscillator
$$
\bar{\varepsilon}=\frac{1}{2}\hbar\omega_0+\frac{\hbar\omega_0}{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}-1}
\langle E \rangle=\frac{1}{2}\hbar\omega_0+\frac{\hbar\omega_0}{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}-1}
$$
The left plot below shows the Bose-Einstein distribution vs energy. We see that low-energy states are more likely to be occupied than high-energy states. The right plot shows the increasing thermal energy in the oscillator for increasing temperature and highlights the zero-point energy $\hbar\omega_0/2$ that remains in the oscillator at $T=0$ because of the uncertainty principle. Moreover, we see that the energy in the oscillator only starts to increase significantly when $kT>\hbar \omega$. I.e., the heat capacity only becomes significant for $kT>\hbar \omega$ and goes to zero when $T\rightarrow0$
```python
xline = [1, 1];
yline = [0, 2];
yline = [0, 1];
fig, (ax, ax2) = pyplot.subplots(ncols=2, figsize=(10, 5))
omega = np.linspace(0.1, 2)
ax.plot(omega, 1/(np.exp(omega) - 1), '-', xline, yline, 'k--')
ax.plot(omega, 1/(np.exp(omega) - 1), '-', xline, yline, 'r--')
ax.set_ylim(0, top=3)
ax.set_xlim(left=0)
ax.set_xlabel('$\hbar \omega$')
......@@ -251,20 +251,21 @@ ax.set_xticklabels(['$0$', '$k_B T$'])
ax.set_ylabel('$n$')
ax.set_yticks([1, 2])
ax.set_yticklabels(['$1$', '$2$'])
ax.text(1, 0.5, r'$\hbar \omega = kT$', ha='left', color='r');
draw_classic_axes(ax, xlabeloffset=.2)
ax.text(1, 1, r'$\hbar \omega = kT$', ha='left', color='r');
temps = np.linspace(0.01, 2)
ax2.plot(temps, 1/2 + 1/(np.exp(1/temps)-1))
ax2.set_ylim(bottom=0)
ax2.set_xlabel('$k_B T$')
ax2.set_xticks([0, 1])
ax2.set_xticklabels(['$0$', r'$\hbar \omega$'])
ax2.set_ylabel(r"$\bar\varepsilon$")
ax2.set_xticklabels(['$0$', r'$\hbar \omega_0$'])
ax2.set_ylabel(r"$\langle E \rangle$")
ax2.set_yticks([1/2])
ax2.set_yticklabels([r'$\hbar\omega/2$'])
ax2.set_yticklabels([r'$\hbar\omega_0/2$'])
draw_classic_axes(ax2, xlabeloffset=.15)
```
We now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\bar{\varepsilon}$ with respect to $T$.
We now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\langle E \rangle$ with respect to $T$.
$$
\begin{multline}
C = \frac{\partial\bar{\varepsilon}}{\partial T}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment