Skip to content
Snippets Groups Projects
Commit c85154e4 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

Update 10_xray_solutions.md

parent 726926ab
Branches
No related tags found
1 merge request!104lecture 10 solutions
Pipeline #57550 passed
...@@ -142,19 +142,32 @@ plt.show() ...@@ -142,19 +142,32 @@ plt.show()
## Exercise 4: Structure factors ## Exercise 4: Structure factors
1. 1.
$$ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)})$
S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)})
$$
2. 2.
Solving for $h$, $k$, and $l$ results in Solving for $h$, $k$, and $l$ results in
$$ $
S(\mathbf{G}) = \begin{cases} S(\mathbf{G}) = \begin{cases}
2f, \: \text{if $h+k+l$ is even}\\ 2f, \: \text{if $h+k+l$ is even}\\
0, \: \text{if $h+k+l$ is odd}. 0, \: \text{if $h+k+l$ is odd}.
\end{cases} \end{cases}
$$ $
Thus if $h+k+l$ is odd, diffraction peaks disappear.
Thus if $h+k+l$ is odd, diffraction peaks dissapear
3.
Let $f_1 \neq f_2$, then
$
S(\mathbf{G}) = \begin{cases}
f_1 + f_2, \text{if $h+k+l$ is even}\\
f_1 - f_2, \text{if $h+k+l$ is odd}
\end{cases}
$
4. 4.
Due to bcc systematic absences, the peaks from lowest to largest angle are: Due to bcc systematic absences, the peaks from lowest to largest angle are:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment