Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Solid state physics
lectures
Commits
dc2ddd22
Commit
dc2ddd22
authored
4 years ago
by
T. van der Sar
Browse files
Options
Downloads
Patches
Plain Diff
Update 13_semiconductors.md
parent
517f2d37
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#39869
passed
4 years ago
Stage: build
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/13_semiconductors.md
+8
-8
8 additions, 8 deletions
src/13_semiconductors.md
with
8 additions
and
8 deletions
src/13_semiconductors.md
+
8
−
8
View file @
dc2ddd22
...
...
@@ -191,12 +191,12 @@ Applying the algorithm:
$$n_h =
\i
nt_{-E_v}^
\i
nfty f(E+E_F)g_h(E+E_v)dE =
\i
nt_{-E_v}^
\i
nfty
\f
rac{(2m_h)^{3/2}}{2
\p
i^2
\h
bar^3}
\s
qrt{E+E_v}
\f
rac{1}{e^{(E+E_F)/kT}+1}dE$$
$$n_e =
\i
nt_{E_
G
}^
\i
nfty f(E-E_F)g_e(E)dE =
\i
nt_{E_
G
}^
\i
nfty
\f
rac{(2m_e)^{3/2}}{2
\p
i^2
\h
bar^3}
\s
qrt{E-E_
G
}
\f
rac{1}{e^{(E-E_F)/kT}+1}dE$$
$$n_e =
\i
nt_{E_
c
}^
\i
nfty f(E-E_F)g_e(E)dE =
\i
nt_{E_
c
}^
\i
nfty
\f
rac{(2m_e)^{3/2}}{2
\p
i^2
\h
bar^3}
\s
qrt{E-E_
c
}
\f
rac{1}{e^{(E-E_F)/kT}+1}dE$$
We need to solve $n_e = n_h$
Simplification:
Fermi level is far from both bands $E_F
\g
g kT$ and $E_
G
- E_F
\g
g kT$
Fermi level is far from both bands $E_F
-E_v
\g
g kT$ and $E_
c
- E_F
\g
g kT$
Therefore Fermi-Dirac distribution is approximately similar to Boltzmann distribution.
...
...
@@ -204,8 +204,8 @@ $$f(E\pm E_F) \approx e^{-(E\pm E_F)/kT}$$
Now we can calculate $n_e$ and $n_h$:
$$n_h
\a
pprox
\f
rac{(2m_h)^{3/2}}{2
\p
i^2
\h
bar^3}e^{-E_F/kT}
\i
nt_
0
^
\i
nfty
\s
qrt{E}e^{-E/kT}dE =
N_V e^{-E_F/kT},$$
$$n_h
\a
pprox
\f
rac{(2m_h)^{3/2}}{2
\p
i^2
\h
bar^3}e^{-E_F/kT}
\i
nt_
{-E_v}
^
\i
nfty
\s
qrt{E
+E_v
}e^{-E/kT}dE =
N_V e^{
E_v
-E_F/kT},$$
with
...
...
@@ -218,18 +218,18 @@ the density of holes with energy $E<kT$ (compare with the rule above).
Similarly for electrons:
$$n_e = N_C e^{-(E_
G
- E_F)/kT},
\q
uad N_C = 2
\l
eft(
\f
rac{2
\p
i m_e kT}{h^2}
\r
ight)^{3/2}$$
$$n_e = N_C e^{-(E_
c
- E_F)/kT},
\q
uad N_C = 2
\l
eft(
\f
rac{2
\p
i m_e kT}{h^2}
\r
ight)^{3/2}$$
Combining everything together:
$$n_h
\a
pprox N_V e^{-E_F/kT} = N_C e^{-(E_
G
-E_F)/kT}
\a
pprox n_e$$
$$n_h
\a
pprox N_V e^{
E_v
-E_F/kT} = N_C e^{-(E_
c
-E_F)/kT}
\a
pprox n_e$$
Solving for $E_F$:
$$E_F =
\f
rac{E_
C
+ E_
V
}{2} -
\f
rac{3}{4}kT
\l
og(m_e/m_h)$$
$$E_F =
\f
rac{E_
c
+ E_
v
}{2} -
\f
rac{3}{4}kT
\l
og(m_e/m_h)$$
An extra observation: regardless of where $E_F$ is located, $n_e n_h = N_C N_V e^{-E_
G
/kT}
\e
quiv n_i^2$.
An extra observation: regardless of where $E_F$ is located, $n_e n_h = N_C N_V e^{-
(
E_
c-E_v)
/kT}
\e
quiv n_i^2$.
$n_i$ is the
**intrinsic carrier concentration**
, and for a pristine semiconductor $n_e = n_h = n_i$.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment