Skip to content
Snippets Groups Projects
Commit dde00c62 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 5_atoms_and_lcao_solutions.md - typo fix

parent 44007e57
No related branches found
No related tags found
No related merge requests found
Pipeline #91244 passed
......@@ -82,7 +82,10 @@ $$
-t & E_0 + \gamma
\end{pmatrix},
$$
where $\gamma = e d \mathcal{E}/2$ and have used $$⟨1|ex\mathcal{E}|1⟩ = -e d \mathcal{E}/2⟨1|1⟩ = -e d \mathcal{E}/2$$
where $\gamma = e d \mathcal{E}/2$ and we have used
$$
⟨1|ex\mathcal{E}|1⟩ = -e d \mathcal{E}/2⟨1|1⟩ = -e d \mathcal{E}/2
$$
#### Question 3.
......@@ -90,13 +93,18 @@ The eigenstates of the Hamiltonian are given by:
$$
E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2}
$$
Calling the elements of the eigenvector $\alpha$ and $\beta$, we find
$$
\alpha(E_0-\gamma)-\beta t = \alpha E_\pm
$$
From this we find
$$
beta = -\frac{E_\pm- E_0 + \gamma}{t}\alpha = -\frac{\pm\sqrt{t^2+\gamma^2}}{t}
$$
Then, using the normalization condition $\alpha^2+\beta^2$=1, we find the normalized eigenfunction.
The ground state wave function is:
$$
\begin{split}
|\psi⟩ &= \frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}\begin{pmatrix}
\frac{\gamma+\sqrt{t^2+\gamma^2}}{t}\\
1
\end{pmatrix}\\
|\psi⟩ &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1⟩+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2⟩
\end{split}
$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment