Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Solid state physics
lectures
Commits
ec0ebca0
Commit
ec0ebca0
authored
4 years ago
by
Kostas Vilkelis
Browse files
Options
Downloads
Patches
Plain Diff
add band diagram
parent
596d0a1e
No related branches found
Branches containing commit
No related tags found
1 merge request
!107
Write up np junctions
Pipeline
#59802
passed
4 years ago
Stage: build
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/14_doping_and_devices.md
+233
-1
233 additions, 1 deletion
src/14_doping_and_devices.md
with
233 additions
and
1 deletion
src/14_doping_and_devices.md
+
233
−
1
View file @
ec0ebca0
...
...
@@ -5,10 +5,16 @@ import numpy as np
from
scipy.optimize
import
curve_fit
from
scipy.integrate
import
quad
import
plotly.offline
as
py
import
plotly.graph_objs
as
go
from
common
import
draw_classic_axes
,
configure_plotting
configure_plotting
()
py
.
init_notebook_mode
(
connected
=
True
)
def
sqrt_plus
(
x
):
return
np
.
sqrt
(
x
*
(
x
>=
0
))
...
...
@@ -204,7 +210,233 @@ The main idea is to plot the dependence of various energies ($E_F$, bottom of co
So here is our problem for today:

```
python
def
trans
(
x
,
a
,
b
):
x
=
(
x
-
a
)
/
(
b
-
a
)
return
h
(
x
)
/
(
h
(
x
)
+
h
(
1
-
x
))
def
h
(
x
):
return
(
x
>
0
)
*
np
.
exp
(
-
1
/
x
)
left_cutoff
=
0.3
right_cutoff
=
0.7
x
=
np
.
linspace
(
0
,
1
,
100
)
mid_idx
=
(
x
>
left_cutoff
)
*
(
x
<
right_cutoff
)
Ef_p
=
0.5
Ef_n
=
Ef_p
+
0.25
Ef_delta
=
Ef_n
-
Ef_p
E_C_1
=
1
E_V_1
=
0.25
E_C
=
E_C_1
-
trans
(
x
,
left_cutoff
,
right_cutoff
)
*
Ef_delta
E_V
=
E_V_1
-
trans
(
x
,
left_cutoff
,
right_cutoff
)
*
Ef_delta
fig1
=
go
.
Figure
()
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
0
,
left_cutoff
],
y
=
[
E_V_1
,
E_V_1
],
line_color
=
'
red
'
,
mode
=
'
lines
'
,
name
=
r
'
$E_V$
'
,
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
0
,
left_cutoff
],
y
=
[
E_C_1
,
E_C_1
],
line_color
=
'
blue
'
,
mode
=
'
lines
'
,
name
=
r
'
$E_C$
'
,
))
# n bands (button 1)
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
right_cutoff
,
1
],
y
=
[
E_V_1
,
E_V_1
],
line_color
=
'
red
'
,
mode
=
'
lines
'
,
showlegend
=
False
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
right_cutoff
,
1
],
y
=
[
E_C_1
,
E_C_1
],
line_color
=
'
blue
'
,
mode
=
'
lines
'
,
showlegend
=
False
))
# p fermi
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
0
,
left_cutoff
],
y
=
[
Ef_p
,
Ef_p
],
line_color
=
'
black
'
,
mode
=
'
lines
'
,
line_dash
=
'
dot
'
,
name
=
r
'
$E_F$
'
))
# n fermi (button 1)
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
right_cutoff
,
1
],
y
=
[
Ef_n
,
Ef_n
],
line_color
=
'
black
'
,
mode
=
'
lines
'
,
line_dash
=
'
dot
'
,
name
=
'
r$E_f$
'
,
showlegend
=
False
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
right_cutoff
,
1
],
y
=
[
E_V_1
-
Ef_delta
,
E_V_1
-
Ef_delta
],
line_color
=
'
red
'
,
mode
=
'
lines
'
,
showlegend
=
False
,
visible
=
False
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
right_cutoff
,
1
],
y
=
[
E_C_1
-
Ef_delta
,
E_C_1
-
Ef_delta
],
line_color
=
'
blue
'
,
mode
=
'
lines
'
,
showlegend
=
False
,
visible
=
False
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
[
0
,
1
],
y
=
[
Ef_p
,
Ef_p
],
line_color
=
'
black
'
,
mode
=
'
lines
'
,
line_dash
=
'
dot
'
,
name
=
'
r$E_F$
'
,
visible
=
False
,
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
x
[
mid_idx
],
y
=
E_C
[
mid_idx
],
line_color
=
'
blue
'
,
line_dash
=
'
dot
'
,
visible
=
False
,
showlegend
=
False
))
fig1
.
add_trace
(
go
.
Scatter
(
x
=
x
[
mid_idx
],
y
=
E_V
[
mid_idx
],
line_color
=
'
red
'
,
line_dash
=
'
dot
'
,
visible
=
False
,
showlegend
=
False
))
updatemenus
=
list
([
dict
(
type
=
"
buttons
"
,
direction
=
"
down
"
,
active
=
0
,
buttons
=
list
([
dict
(
label
=
"
n and p
"
,
method
=
"
update
"
,
args
=
[{
"
visible
"
:
[
True
,
True
,
True
,
True
,
True
,
True
,
False
,
False
,
False
,
False
,
False
]}]),
dict
(
label
=
"
Equilibrium
"
,
method
=
"
update
"
,
args
=
[{
"
visible
"
:
[
True
,
True
,
False
,
False
,
False
,
False
,
True
,
True
,
True
,
False
,
False
]}]),
dict
(
label
=
"
Band Bending
"
,
method
=
"
update
"
,
args
=
[{
"
visible
"
:
[
True
,
True
,
False
,
False
,
False
,
False
,
True
,
True
,
True
,
True
,
True
]}]),
]),
)
]
)
layout
=
dict
(
dragmode
=
False
,
showlegend
=
True
,
updatemenus
=
updatemenus
,
plot_bgcolor
=
'
rgb(254, 254, 254)
'
,
yaxis_range
=
[(
E_V_1
-
Ef_delta
)
-
0.1
,
0.1
+
E_C_1
],
xaxis_range
=
[
-
0.05
,
1.05
],
width
=
800
,
height
=
600
,
xaxis
=
dict
(
title
=
r
'
$x$
'
,
showticklabels
=
False
),
yaxis
=
dict
(
title
=
r
'
$E$
'
,
showticklabels
=
False
),
title
=
'
Band Diagram
'
)
fig1
.
update_xaxes
(
showline
=
True
,
linewidth
=
2
,
linecolor
=
'
black
'
)
fig1
.
update_yaxes
(
showline
=
True
,
linewidth
=
2
,
linecolor
=
'
black
'
)
fig1
.
add_annotation
(
x
=
1.065
,
y
=
-
0.1
,
xref
=
"
x
"
,
yref
=
"
y
"
,
axref
=
"
x
"
,
ayref
=
"
y
"
,
text
=
""
,
ax
=
0.9
,
ay
=
-
0.1
,
showarrow
=
True
,
arrowhead
=
3
,
arrowsize
=
30
,
arrowwidth
=
0.1
,
arrowcolor
=
'
black
'
)
fig1
.
add_annotation
(
x
=
-
0.05
,
y
=
1.12
,
xref
=
"
x
"
,
yref
=
"
y
"
,
axref
=
"
x
"
,
ayref
=
"
y
"
,
text
=
""
,
ax
=
-
0.05
,
ay
=
1.1
,
showarrow
=
True
,
arrowhead
=
3
,
arrowsize
=
30
,
arrowwidth
=
0.1
,
arrowcolor
=
'
black
'
)
fig1
.
add_annotation
(
showarrow
=
False
,
x
=
0.15
,
y
=
-
0.05
,
xref
=
"
x
"
,
yref
=
"
y
"
,
axref
=
"
x
"
,
ayref
=
"
y
"
,
text
=
"
p-region
"
)
fig1
.
add_annotation
(
showarrow
=
False
,
x
=
0.5
,
y
=
-
0.05
,
xref
=
"
x
"
,
yref
=
"
y
"
,
axref
=
"
x
"
,
ayref
=
"
y
"
,
text
=
"
depletion region
"
)
fig1
.
add_annotation
(
showarrow
=
False
,
x
=
0.85
,
y
=
-
0.05
,
xref
=
"
x
"
,
yref
=
"
y
"
,
axref
=
"
x
"
,
ayref
=
"
y
"
,
text
=
"
n-region
"
)
fig1
.
update_layout
(
layout
)
py
.
plot
(
fig1
)
fig1
.
show
()
```
The main difference between $n$-type and $p$-type semiconductors is the location of the Fermi level $E_F$.
The Fermi level of an $n$-type semiconductor is close to the donor states.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment