Lecture_13
All threads resolved!
All threads resolved!
Compare changes
+ 65
− 47
@@ -43,13 +43,28 @@ _(based on chapters 17–18 of the book)_
@@ -58,70 +73,78 @@ The effective mass is $m_{eff} = \hbar^2\left(d^2 E(k)/dk^2\right)^{-1} = m$.
@@ -133,8 +156,13 @@ Therefore we can approximate the dispersion relation of both bands as parabolic.
@@ -169,16 +197,6 @@ ax.legend()
@@ -189,9 +207,9 @@ $$ g(E_h) = (2m_h)^{3/2}\sqrt{E_h+E_v}/2\pi^2\hbar^3$$
@@ -200,11 +218,11 @@ Fermi level is far from both bands $E_F-E_v \gg kT$ and $E_c - E_F \gg kT$