Skip to content
Snippets Groups Projects

Solutions to lecture 5: LCAO model

Merged Bowy La Riviere requested to merge 5_solutions_LCAO into master
All threads resolved!
1 file
+ 14
20
Compare changes
  • Side-by-side
  • Inline
@@ -20,69 +20,63 @@
1. $$
\psi(x) =
\begin{cases}
&\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\
&\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1
&\sqrt{κ}e^{κ(x-x_1)}, x<x_1\\
&\sqrt{κ}e^{-κ(x-x_1)}, x>x_1
\end{cases}
$$
Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$.
Where $κ = \sqrt{\frac{-2mE}{ħ^2}} = \frac{mV_0}{ħ^2}$.
The energy is given by $\epsilon_1 = \epsilon_2 = -\frac{mV_0}{\hbar^2}$
The energy is given by $ϵ_1 = ϵ_2 = -\frac{mV_0}{ħ^2}$
The wave function of a single delta peak is given by
$$
\psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|}
\psi_1(x) = \frac{\sqrt{mV_0}}{ħ}e^{-\frac{mV_0}{ħ^2}|x-x_1|}
$$
$\psi_2(x)$ can be found by replacing $x_1$ by $x_2$
2. $$
H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix}
1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
\exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\
\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1))
H = -\frac{mV_0^2}{ħ^2}\begin{pmatrix}
1/2+\exp(-\frac{mV_0}{ħ^2}(x_2-x_1)) &
\exp(\frac{mV_0}{ħ^2}(x_2-x_1))\\
\exp(-\frac{mV_0}{ħ^2}(x_2-x_1)) &
1/2+\exp(+\frac{mV_0}{ħ^2}(x_2-x_1))
\end{pmatrix}
$$
3. $$
\epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha})
ϵ_{\pm} = \beta(3/2+\cosh{2α}+2\cosh{α}\pm \cosh{α})
$$
Where $\beta = -\frac{mV_0^2}{\hbar^2}$ and $\alpha = \frac{mV_0}{\hbar^2}(x_2-x_1)$
Where $\beta = -\frac{mV_0^2}{ħ^2}$ and $α = \frac{mV_0}{ħ^2}(x_2-x_1)$
### Question 3
1.
$$
H_{\mathcal{E}} = eRE
H_{\mathcal{E}} = eR\mathcal{E},
$$
Where R is the distance between the negatively charged electrons and the positive charged nuclei.
where R is the distance between the negatively charged electrons and the positive charged nuclei.
2.
$$
H_{eff} = \begin{pmatrix}
E_0 - \gamma & -t\\
-t & E_0 + \gamma
\end{pmatrix}
$$
Where $\gamma = e d \mathcal{E}/2$ and where we have used that $$⟨1|H_{eff}|1⟩ = -e d \mathcal{E}/2⟨1|1⟩ = e d \mathcal{E}/2$$
3.
The eigenstates of the Hamiltonian are given by:
$$
E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2}
$$
The ground state wave function is:
$$
\begin{split}
|\psi⟩ &= \frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}\begin{pmatrix}
Loading