Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Solid state physics
lectures
Merge requests
!77
Solutions to lecture 5: LCAO model
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Solutions to lecture 5: LCAO model
5_solutions_LCAO
into
master
Overview
2
Commits
8
Pipelines
8
Changes
1
All threads resolved!
Hide all comments
Merged
Bowy La Riviere
requested to merge
5_solutions_LCAO
into
master
5 years ago
Overview
2
Commits
8
Pipelines
8
Changes
1
All threads resolved!
Hide all comments
Expand
Solutions to the LCAO model
0
0
Merge request reports
Viewing commit
0d599e79
Prev
Next
Show latest version
1 file
+
14
−
20
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Verified
0d599e79
unicodize
· 0d599e79
Anton Akhmerov
authored
5 years ago
src/5_atoms_and_lcao_solutions.md
+
14
−
20
Options
@@ -20,69 +20,63 @@
1.
$$
\p
si(x) =
\b
egin{cases}
&
\s
qrt{
\k
appa}e^{
\k
appa
(x-x_1)}, x<x_1
\\
&
\s
qrt{
\k
appa}e^{-
\k
appa
(x-x_1)}, x>x_1
&
\s
qrt{
κ}e^{κ
(x-x_1)}, x<x_1
\\
&
\s
qrt{
κ}e^{-κ
(x-x_1)}, x>x_1
\e
nd{cases}
$$
Where $
\k
appa
=
\s
qrt{
\f
rac{-2mE}{
\h
bar
^2}} =
\f
rac{mV_0}{
\h
bar
^2}$.
Where $
κ
=
\s
qrt{
\f
rac{-2mE}{
ħ
^2}} =
\f
rac{mV_0}{
ħ
^2}$.
The energy is given by $
\e
psilon_1 =
\e
psilon
_2 = -
\f
rac{mV_0}{
\h
bar
^2}$
The energy is given by $
ϵ_1 = ϵ
_2 = -
\f
rac{mV_0}{
ħ
^2}$
The wave function of a single delta peak is given by
$$
\p
si_1(x) =
\f
rac{
\s
qrt{mV_0}}{
\h
bar
}e^{-
\f
rac{mV_0}{
\h
bar
^2}|x-x_1|}
\p
si_1(x) =
\f
rac{
\s
qrt{mV_0}}{
ħ
}e^{-
\f
rac{mV_0}{
ħ
^2}|x-x_1|}
$$
$
\p
si_2(x)$ can be found by replacing $x_1$ by $x_2$
2.
$$
H = -
\f
rac{mV_0^2}{
\h
bar
^2}
\b
egin{pmatrix}
1/2+
\e
xp(-
\f
rac{mV_0}{
\h
bar
^2}(x_2-x_1)) &
\e
xp(
\f
rac{mV_0}{
\h
bar
^2}(x_2-x_1))
\\
\e
xp(-
\f
rac{mV_0}{
\h
bar
^2}(x_2-x_1)) &
1/2+
\e
xp(+
\f
rac{mV_0}{
\h
bar
^2}(x_2-x_1))
H = -
\f
rac{mV_0^2}{
ħ
^2}
\b
egin{pmatrix}
1/2+
\e
xp(-
\f
rac{mV_0}{
ħ
^2}(x_2-x_1)) &
\e
xp(
\f
rac{mV_0}{
ħ
^2}(x_2-x_1))
\\
\e
xp(-
\f
rac{mV_0}{
ħ
^2}(x_2-x_1)) &
1/2+
\e
xp(+
\f
rac{mV_0}{
ħ
^2}(x_2-x_1))
\e
nd{pmatrix}
$$
3.
$$
\e
psilon
_{
\p
m} =
\b
eta(3/2+
\c
osh{2
\a
lpha
}+2
\c
osh{
\a
lpha
}
\p
m
\c
osh{
\a
lpha
})
ϵ
_{
\p
m} =
\b
eta(3/2+
\c
osh{2
α
}+2
\c
osh{
α
}
\p
m
\c
osh{
α
})
$$
Where $
\b
eta = -
\f
rac{mV_0^2}{
\h
bar
^2}$ and $
\a
lpha
=
\f
rac{mV_0}{
\h
bar
^2}(x_2-x_1)$
Where $
\b
eta = -
\f
rac{mV_0^2}{
ħ
^2}$ and $
α
=
\f
rac{mV_0}{
ħ
^2}(x_2-x_1)$
### Question 3
1.
$$
H_{
\m
athcal{E}} = eR
E
H_{
\m
athcal{E}} = eR
\m
athcal{E},
$$
Where R is the distance between the negatively charged electrons and the positive charged nuclei.
where R is the distance between the negatively charged electrons and the positive charged nuclei.
2.
$$
H_{eff} =
\b
egin{pmatrix}
E_0 -
\g
amma & -t
\\
-t & E_0 +
\g
amma
\e
nd{pmatrix}
$$
Where $
\g
amma = e d
\m
athcal{E}/2$ and where we have used that $$⟨1|H_{eff}|1⟩ = -e d
\m
athcal{E}/2⟨1|1⟩ = e d
\m
athcal{E}/2$$
3.
The eigenstates of the Hamiltonian are given by:
$$
E_{
\p
m} = E_0
\p
m
\s
qrt{t^2+
\g
amma^2}
$$
The ground state wave function is:
$$
\b
egin{split}
|
\p
si⟩ &=
\f
rac{t}{
\s
qrt{(
\g
amma+
\s
qrt{
\g
amma^2+t^2})^2+t^2}}
\b
egin{pmatrix}
Loading