Skip to content
Snippets Groups Projects

Solutions to lecture 5: LCAO model

Merged Bowy La Riviere requested to merge 5_solutions_LCAO into master
All threads resolved!
1 file
+ 107
0
Compare changes
  • Side-by-side
  • Inline
+ 107
0
# Solutions for LCAO model exercises
### Question 1
1. See lecture notes\newline
2. The atomic number of Tungsten is 74:
$$
1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^4
$$
3.
$$
Cu &= [Ar]4s^23d^9
Pd &= [Kr]5s^24d^8
Ag &= [Kr]5s^24d^9
Au &= [Xe]6s^24f^145d^9
$$
### Question 2
1.
$$
\psi(x) =
\begin{cases}
&\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\
&\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1
\end{cases}
$$
Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$.
The energy is given by $\epsilon1 = \epsilon2 = -\frac{mV_0}{\hbar^2}$
The wavefunction of a single delta peak is given by
$$
\psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|}
$$
$\psi_2(x)$ can be found by replacing $x_1$ by $x_2$
2.
$$
H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix}
1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
\exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\
\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) &
1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1))
\end{pmatrix}
$$
3.
$$
\epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha})
$$
Where $\beta = -\frac{mV_0^2}{\hbar^2}$ and $\alpha = \frac{mV_0}{\hbar^2}(x_2-x_1)$
### Question 3
1.
$$
H_{\mathcal{E}} = eRE
$$
Where R is the distance between the negatively charged electrons and the positive charged nuclei.
2.
$$
H_{eff} = \begin{pmatrix}
E_0 - \gamma & -t\\
-t & E_0 + \gamma
\end{pmatrix}
$$
Where $\gamma = e d \mathcal{E}/2$ and where we have used that $$<1|H_{eff}|1> = -e d \mathcal{E}/2<1|1> = e d \mathcal{E}/2$$
3.
The eigenstates of the Hamiltonian are given by:
$$
E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2}
$$
The wavefunction corresponding to the ground state energie is:
$$
\begin{split}
|\psi> &= \frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}\begin{pmatrix}
\frac{\gamma+\sqrt{t^2+\gamma^2}}{t}\\
1
\end{pmatrix}\\
|\psi> &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1>+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2>
\end{split}
$$
4.
$$
P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}})
$$
Loading