Skip to content
Snippets Groups Projects
Commit 638948a5 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update docs/2_debye_model_solutions.md

parent 863b4d61
Branches
No related tags found
No related merge requests found
......@@ -32,6 +32,7 @@ configure_plotting()
### Warm-up exercises
1. For low T, $1/T \rightarrow \infty$. The heat capacity is then given as:
$$
C \overset{\mathrm{low \: T}}{\approx} 9Nk_{\mathrm{B}}\left(\frac{T}{T_{D}}\right)^3\int_0^{\infty}\frac{x^4{\mathrm{e}}^x}{({\mathrm{e}}^x-1)^2}{\mathrm{d}}x.
$$
......@@ -79,12 +80,15 @@ ax.legend();
\end{align}
4. We use $k=\mathbf{k}| = \omega/v_s$ and $dk = d\omega/v_s$ to get
\begin{align}
N_\text{states, 1D} & = 1_p \frac{L}{2\pi} \int_0^{\omega_0} 2 \frac{1}{v_s} d\omega := \int_0^{\omega_0} 2 g_{1D}(\omega) d\omega \\
N_\text{states, 2D} & = 2_p \left(\frac{L}{2\pi}\right)^2 \int_0^{omega_0} 2\pi \frac{\omega}{v_s^2} d\omega := \int_0^{\omega_0} 2 g_{2D}(\omega) d\omega\\
N_\text{states, 3D} & = 3_p \left(\frac{L}{2\pi}\right)^3 \int_0^{omega_0} \frac{\omega^2}{v_s^3} k^2 d\omega := \int_0^{\omega_0} 2 g_{3D}(\omega) d\omega
N_\text{states, 2D} & = 2_p \left(\frac{L}{2\pi}\right)^2 \int_0^{\omega_0} 2\pi \frac{\omega}{v_s^2} d\omega := \int_0^{\omega_0} g_{2D}(\omega) d\omega \\
N_\text{states, 3D} & = 3_p \left(\frac{L}{2\pi}\right)^3 \int_0^{\omega_0} 4\pi \frac{\omega^2}{v_s^3} d\omega := \int_0^{\omega_0} g_{3D}(\omega) d\omega
\end{align}
The integral boundaries set the frequency region in which you calculate the density of states.
5. The density of states is the number of states per unit frequency. It has units of 1 over frequency
### Exercise 2: Debye model in 2D.
......@@ -103,7 +107,7 @@ Here, we analyze the phonon energy and heat capacity of a two-dimensional Debye
$$
E = \int_0^\omega_D \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_0^\omega_D k_B T g(\omega) d\omega = N_\text{modes} k_B T
$$
where we neglected the zero-point energy. In 3D, we have $N_\text{modes} = 3_p N_\text{atoms}$
where we neglected the zero-point energy. In 3D, we have $N_\text{modes} = 3_p N_\text{atoms}$ (Dulong Petit)
3. In the low temperature limit, the high-energy modes are not excited so we can safely let the upper boundary of the integral go to infinity. For convenience, we write $g(\omega) = alpha \omega$, with $\alpha = \frac{L^2}{\pi v_s^2}$. We get
......@@ -116,18 +120,34 @@ Here, we analyze the phonon energy and heat capacity of a two-dimensional Debye
K = 3\alpha\frac{k^3}{\hbar^2}\int_)^\infty\frac{x^2}{e^x-1}dx
$$
### Exercise 3: Different phonon modes.
#### Question 1.
### Exercise 3: Longitudinal and transverse vibrations with different sounds velocities
1. The key idea is that the total energy in the individual harmonic oscillators (the vibrational modes) is the sum of the energies in the individual oscillators:
Neglecting the zero-point energy, the energy in the longitudinal modes is given by
$$
E_\parallel = \int_0^{\omega_D}g_\parallel(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} )d\omega
$$
with $g_\parallel = 1_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\parallel^3} $. Similarly, the energy in the transverse modes is
\begin{gather}
g(\omega) = \sum_{\text{polarizations}}\frac{dN}{dk}\frac{dk}{d\omega} = \left(\frac{L}{2\pi}\right)^3\sum_{\text{polarizations}}4\pi k^2\frac{dk}{d\omega} = \frac{L^3}{2\pi^2}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\omega^2,\\
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + C.
\end{gather}
$$
E_\perp = \int_0^{\omega_D}g_\perp(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} )d\omega
$$
with $g_\perp = 2_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\perp^3} $. Therefore, the total energy is
$$
E = \frac{L^3}{2\pi^2} \left(\frac{1_p}{v_\parallel} + \frac{2_p}{v\perp} \right) \int_0^{\omega_D} \frac{\hbar\omega^3}{e^{\beta\hbar\omega} - 1} d\omega = \frac{L^3 k_B^4 T^4}{2\pi^2\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1} {v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx.
$$
2. As in exercise 1, in the high-T limit, we have $\beta \rightarrow 0$. Therefore, $n_B \approx = k_BT/\hbar\omega$. The integral becomes:
$$
E = \int_0^\omega_D \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_0^\omega_D k_B T g(\omega) d\omega = N_\text{modes} k_B T
$$
and we are left with the Dulong-Petit law $C = 3N_\text{atoms}k_B$.
#### Question 2.
Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$.
#### Question 3.
In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
3. In the low temperature limit we have $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
### Exercise 4: Anisotropic sound velocities.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment