Skip to content
Snippets Groups Projects
Commit f85b1a99 authored by Hidde Leistra's avatar Hidde Leistra
Browse files

Merge branch 'master' into feature/premade-feedback

parents 5f26061a 63f560a8
No related branches found
No related tags found
3 merge requests!26Premade feedback merge,!24Master->develop (this MR contains no useful information),!23WIP: Highlight feedback
This commit is part of merge request !24. Comments created here will be created in the context of that merge request.
Showing
with 29 additions and 17 deletions
......@@ -89,6 +89,12 @@ build/
# development data
data-dev
# test data
tests/data/submissions
# redis dump
dump.rdb
# webpack analyze data
stats.json
......
tests/data/scanned_pdfs/blank.jpg

28 KiB

tests/data/scanned_pdfs/jamy1.jpg

50.8 KiB

tests/data/scanned_pdfs/jamy2.jpg

50.8 KiB

tests/data/scanned_pdfs/latex1.jpg

125 KiB

tests/data/scanned_pdfs/latex2.jpg

124 KiB

tests/data/scanned_pdfs/latex3.jpg

119 KiB

tests/data/scanned_pdfs/latex4.jpg

121 KiB

tests/data/scanned_pdfs/latex5.jpg

111 KiB

tests/data/scanned_pdfs/latex6.jpg

113 KiB

tests/data/scanned_pdfs/messy_three_corners.jpg

69.1 KiB

tests/data/scanned_pdfs/missing_two_corners.jpg

67.6 KiB

tests/data/scanned_pdfs/sample_exam.jpg

59.4 KiB

tests/data/scanned_pdfs/shifted.jpg

67.3 KiB

tests/data/scanned_pdfs/tilted.jpg

65.7 KiB

import math
import os
import cv2
import numpy as np
import PIL
import pytest
......@@ -17,12 +16,12 @@ def distance(keyp1, keyp2):
# Given a name of a exam image and the location it is stored, retrieves the
# image and converts it to binary image
def generate_binary_image(name, datadir):
def generate_image(name, datadir):
pdf_path = os.path.join(datadir, 'scanned_pdfs', f'{name}')
pil_im = PIL.Image.open(pdf_path)
opencv_im = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
_, bin_im = cv2.threshold(opencv_im, 150, 255, cv2.THRESH_BINARY)
return bin_im
pil_im = pil_im.convert('RGB')
image_array = np.array(pil_im)
return image_array
# Tests
......@@ -41,15 +40,22 @@ def test_calc_angle(test_input1, test_input2, expected):
# Tests whether the amount of cornermakers is enough to calculate the angle and
# whether it is lower than 5 as we only add 4 corner markers per page.
@pytest.mark.parametrize('name', os.listdir(
os.path.join('tests',
'data', 'scanned_pdfs')),
ids=os.listdir(
os.path.join('tests', 'data', 'scanned_pdfs')))
def test_detect_enough_cornermarkers(name, datadir):
bin_im = generate_binary_image(name, datadir)
keypoints = scans.find_corner_marker_keypoints(bin_im)
assert(len(keypoints) >= 2 & len(keypoints) <= 4)
test_args = [
('missing_two_corners.jpg', 2),
('sample_exam.jpg', 4),
('shifted.jpg', 4),
('tilted.jpg', 4),
('messy_three_corners.jpg', 3),
('blank.jpg', 0)]
@pytest.mark.parametrize(
'name,expected', test_args,
ids=list(map(lambda e: f"{e[0]} ({e[1]} markers)", test_args)))
def test_detect_enough_cornermarkers(name, expected, datadir):
image = generate_image(name, datadir)
keypoints = scans.find_corner_marker_keypoints(image)
assert(len(keypoints) == expected)
# Tests whether the detected keypoints are actually corner markers.
......@@ -62,10 +68,10 @@ def test_detect_enough_cornermarkers(name, datadir):
ids=os.listdir(
os.path.join('tests', 'data', 'scanned_pdfs')))
def test_detect_valid_cornermarkers(name, datadir):
bin_im = generate_binary_image(name, datadir)
keypoints = scans.find_corner_marker_keypoints(bin_im)
image = generate_image(name, datadir)
keypoints = scans.find_corner_marker_keypoints(image)
h, w, *_ = bin_im.shape
h, w, *_ = image.shape
(xmm, ymm) = (210, 297)
(xcorner, ycorner) = (round(30 * w / xmm), round(30 * h / ymm))
maxdist = math.hypot(xcorner, ycorner)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment