Skip to content
Snippets Groups Projects
Commit 9c804ba1 authored by Maciej Topyla's avatar Maciej Topyla
Browse files

Merge branch 'contentupdate' into 'master'

Correction of the description in the Connection Formulas

See merge request !11
parents 679ce64c c7a9c981
No related branches found
No related tags found
1 merge request!11Correction of the description in the Connection Formulas
Pipeline #124399 passed
......@@ -76,15 +76,15 @@ Below, we will see that the boundary conditions *(connection formulas)* impose c
=== "Positive slope"
| $E > V(x)$ | $E < V(x)$ |
| :-----------: | :-----------: |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
=== "Negative slope"
| $E < V(x)$ | $E > V(x)$ |
| :-----------: | :-----------: |
| $$\text{(blowing up) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(decaying) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$\text{(decaying) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(blowing up) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
**More details in the previous lecture note:** [WBK approximation - Connection formulas](wkb_connection.md#434-summary-of-the-connection-formulas)
......@@ -125,15 +125,15 @@ Below, we will see that the boundary conditions *(connection formulas)* impose c
=== "Positive slope"
| $E > V(x)$ | $E < V(x)$ |
| :-----------: | :-----------: |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
=== "Negative slope"
| $E < V(x)$ | $E > V(x)$ |
| :-----------: | :-----------: |
| $$\text{(blowing up) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(decaying) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$\text{(decaying) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(blowing up) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
**More details in the previous lecture note:** [WBK approximation - Connection formulas](wkb_connection.md#434-summary-of-the-connection-formulas)
......
......@@ -316,8 +316,8 @@ fig.show()
| $E < V(x)$ | $E > V(x)$ |
| :-----------: | :-----------: |
| $$\text{(blowing up) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(decaying) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$\text{(decaying) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(blowing up) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
!!! warning "Warning"
In these tables, we also indicated which wave functions are decaying and which are blowing up *as you move away from the turning point*.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment