Skip to content
Snippets Groups Projects

Correction of the description in the Connection Formulas

Merged Maciej Topyla requested to merge contentupdate into master
2 files
+ 10
10
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 8
8
@@ -76,15 +76,15 @@ Below, we will see that the boundary conditions *(connection formulas)* impose c
=== "Positive slope"
| $E > V(x)$ | $E < V(x)$ |
| :-----------: | :-----------: |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
=== "Negative slope"
| $E < V(x)$ | $E > V(x)$ |
| :-----------: | :-----------: |
| $$\text{(blowing up) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(decaying) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$\text{(decaying) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(blowing up) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
**More details in the previous lecture note:** [WBK approximation - Connection formulas](wkb_connection.md#434-summary-of-the-connection-formulas)
@@ -125,15 +125,15 @@ Below, we will see that the boundary conditions *(connection formulas)* impose c
=== "Positive slope"
| $E > V(x)$ | $E < V(x)$ |
| :-----------: | :-----------: |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (blowing up)}$$ |
| $$\frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_x^{x_t} p(x') dx' + \frac{\pi}{4} \right)$$ | $$\frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x_t}^x \|p(x')\|dx'} \quad \text{ (decaying)}$$ |
=== "Negative slope"
| $E < V(x)$ | $E > V(x)$ |
| :-----------: | :-----------: |
| $$\text{(blowing up) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(decaying) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$\text{(decaying) } \quad \frac{C}{\sqrt{\|p(x)\|}} e^{-\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$\frac{2C}{\sqrt{p(x)}} \sin\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
| $$ \text{(blowing up) } \quad \frac{D}{\sqrt{\|p(x)\|}} e^{\frac{1}{\hbar} \int_{x}^{x_t} \|p(x')\|dx'}$$ | $$ \frac{D}{\sqrt{p(x)}} \cos\left( \frac{1}{\hbar} \int_{x_t}^{x} p(x') dx' + \frac{\pi}{4} \right)$$ |
**More details in the previous lecture note:** [WBK approximation - Connection formulas](wkb_connection.md#434-summary-of-the-connection-formulas)
Loading