Forked from
kwant / kwant
281 commits behind the upstream repository.
-
Bas Nijholt authoredBas Nijholt authored
superconductor.py.diff 5.35 KiB
@@ -1,132 +1,141 @@
# Tutorial 2.6. "Superconductors": orbitals, conservation laws and symmetries
# ===========================================================================
#
# Physics background
# ------------------
# - conductance of a NS-junction (Andreev reflection, superconducting gap)
#
# Kwant features highlighted
# --------------------------
# - Implementing electron and hole ("orbital") degrees of freedom
# using conservation laws.
# - Use of discrete symmetries to relate scattering states.
+import _defs
import kwant
import tinyarray
import numpy as np
# For plotting
from matplotlib import pyplot
+from contextlib import redirect_stdout
tau_x = tinyarray.array([[0, 1], [1, 0]])
tau_y = tinyarray.array([[0, -1j], [1j, 0]])
tau_z = tinyarray.array([[1, 0], [0, -1]])
#HIDDEN_BEGIN_nbvn
def make_system(a=1, W=10, L=10, barrier=1.5, barrierpos=(3, 4),
mu=0.4, Delta=0.1, Deltapos=4, t=1.0):
# Start with an empty tight-binding system. On each site, there
# are now electron and hole orbitals, so we must specify the
# number of orbitals per site. The orbital structure is the same
# as in the Hamiltonian.
lat = kwant.lattice.square(norbs=2)
syst = kwant.Builder()
#### Define the scattering region. ####
# The superconducting order parameter couples electron and hole orbitals
# on each site, and hence enters as an onsite potential.
# The pairing is only included beyond the point 'Deltapos' in the scattering region.
syst[(lat(x, y) for x in range(Deltapos) for y in range(W))] = (4 * t - mu) * tau_z
syst[(lat(x, y) for x in range(Deltapos, L) for y in range(W))] = (4 * t - mu) * tau_z + Delta * tau_x
# The tunnel barrier
syst[(lat(x, y) for x in range(barrierpos[0], barrierpos[1])
for y in range(W))] = (4 * t + barrier - mu) * tau_z
# Hoppings
syst[lat.neighbors()] = -t * tau_z
#HIDDEN_END_nbvn
#HIDDEN_BEGIN_ttth
#### Define the leads. ####
# Left lead - normal, so the order parameter is zero.
sym_left = kwant.TranslationalSymmetry((-a, 0))
# Specify the conservation law used to treat electrons and holes separately.
# We only do this in the left lead, where the pairing is zero.
lead0 = kwant.Builder(sym_left, conservation_law=-tau_z, particle_hole=tau_y)
lead0[(lat(0, j) for j in range(W))] = (4 * t - mu) * tau_z
lead0[lat.neighbors()] = -t * tau_z
#HIDDEN_END_ttth
#HIDDEN_BEGIN_zuuw
# Right lead - superconducting, so the order parameter is included.
sym_right = kwant.TranslationalSymmetry((a, 0))
lead1 = kwant.Builder(sym_right)
lead1[(lat(0, j) for j in range(W))] = (4 * t - mu) * tau_z + Delta * tau_x
lead1[lat.neighbors()] = -t * tau_z
#### Attach the leads and return the system. ####
syst.attach_lead(lead0)
syst.attach_lead(lead1)
return syst
#HIDDEN_END_zuuw
#HIDDEN_BEGIN_jbjt
def plot_conductance(syst, energies):
# Compute conductance
data = []
for energy in energies:
smatrix = kwant.smatrix(syst, energy)
# Conductance is N - R_ee + R_he
data.append(smatrix.submatrix((0, 0), (0, 0)).shape[0] -
smatrix.transmission((0, 0), (0, 0)) +
smatrix.transmission((0, 1), (0, 0)))
#HIDDEN_END_jbjt
- pyplot.figure()
+ fig = pyplot.figure()
pyplot.plot(energies, data)
pyplot.xlabel("energy [t]")
pyplot.ylabel("conductance [e^2/h]")
- pyplot.show()
+ pyplot.setp(fig.get_axes()[0].get_xticklabels(),
+ fontsize=_defs.mpl_tick_size)
+ pyplot.setp(fig.get_axes()[0].get_yticklabels(),
+ fontsize=_defs.mpl_tick_size)
+ fig.set_size_inches(_defs.mpl_width_in, _defs.mpl_width_in * 3. / 4.)
+ fig.subplots_adjust(left=0.15, right=0.95, top=0.95, bottom=0.15)
+ for extension in ('pdf', 'png'):
+ fig.savefig("superconductor_transport_result." + extension,
+ dpi=_defs.dpi)
#HIDDEN_BEGIN_pqmp
def check_PHS(syst):
# Scattering matrix
s = kwant.smatrix(syst, energy=0)
# Electron to electron block
s_ee = s.submatrix((0,0), (0,0))
# Hole to hole block
s_hh = s.submatrix((0,1), (0,1))
print('s_ee: \n', np.round(s_ee, 3))
print('s_hh: \n', np.round(s_hh[::-1, ::-1], 3))
print('s_ee - s_hh^*: \n',
np.round(s_ee - s_hh[::-1, ::-1].conj(), 3), '\n')
# Electron to hole block
s_he = s.submatrix((0,1), (0,0))
# Hole to electron block
s_eh = s.submatrix((0,0), (0,1))
print('s_he: \n', np.round(s_he, 3))
print('s_eh: \n', np.round(s_eh[::-1, ::-1], 3))
print('s_he + s_eh^*: \n',
np.round(s_he + s_eh[::-1, ::-1].conj(), 3))
#HIDDEN_END_pqmp
def main():
syst = make_system(W=10)
- # Check that the system looks as intended.
- kwant.plot(syst)
-
# Finalize the system.
syst = syst.finalized()
# Check particle-hole symmetry of the scattering matrix
- check_PHS(syst)
+ with open('check_PHS_out.txt', 'w') as f:
+ with redirect_stdout(f):
+ check_PHS(syst)
# Compute and plot the conductance
plot_conductance(syst, energies=[0.002 * i for i in range(-10, 100)])
# Call the main function if the script gets executed (as opposed to imported).
# See <http://docs.python.org/library/__main__.html>.
if __name__ == '__main__':
main()