Skip to content
Snippets Groups Projects
Commit 5dad55ff authored by Tómas's avatar Tómas Committed by Anton Akhmerov
Browse files

test for current conservation

parent f7bc034a
No related branches found
No related tags found
No related merge requests found
......@@ -18,6 +18,17 @@ import kwant
modes_se = leads.selfenergy
def current_conserving(stabilized, info=None):
vecs, vecsl = stabilized.vecs, stabilized.vecslmbdainv
n = stabilized.nmodes
current = 1j * vecs.T.conj().dot(vecsl)
current = current + current.T.conj()
should_be = np.zeros_like(current)
should_be[:2*n, :2*n] = np.diag(n * [1] + n * [-1])
if not np.allclose(current, should_be):
raise AssertionError(np.round(current, 4), n, info)
def h_cell_s_func(t, w, e):
h = (4 * t - e) * np.identity(w)
h.flat[1 :: w + 1] = -t
......@@ -62,17 +73,20 @@ def test_regular_fully_degenerate():
projectors = [sparse.csr_matrix(i) for i in [conserved[:, :w],
conserved[:, w:]]]
modes2 = leads.modes(h_cell, h_hop, projectors=projectors)
current_conserving(modes2[1])
assert_almost_equal(g, modes2[1].selfenergy())
trs = sparse.identity(2*w)
modes3 = leads.modes(h_cell, h_hop, projectors=projectors,
time_reversal=trs)
current_conserving(modes3[1])
assert_almost_equal(g, modes3[1].selfenergy())
phs = np.eye(2*w, 2*w, w) + np.eye(2*w, 2*w, -w)
modes4 = leads.modes(h_cell, h_hop, projectors=projectors,
time_reversal=trs, particle_hole=phs)
current_conserving(modes4[1])
assert_almost_equal(g, modes4[1].selfenergy())
def test_regular_degenerate_with_crossing():
......@@ -241,6 +255,7 @@ def test_modes():
k = np.arccos(-h / (2 * t))
v = 2 * t * np.sin(k)
prop, stab = leads.modes(np.array([[h]]), np.array([[t]]))
current_conserving(stab)
assert stab.nmodes == 1
assert stab.sqrt_hop[0] == np.sqrt(np.linalg.norm(t))
np.testing.assert_almost_equal(prop.velocities, [-v, v])
......@@ -275,7 +290,7 @@ def check_equivalence(h, t, n, sym='', particle_hole=None, chiral=None,
result = leads.modes(h, t, stabilization=algo, chiral=chiral,
particle_hole=particle_hole,
time_reversal=time_reversal)[1]
current_conserving(result, (sym, algo, n))
vecs, vecslmbdainv = result.vecs, result.vecslmbdainv
# Bring the calculated vectors to real space
......@@ -315,33 +330,33 @@ def test_symm_algorithm_equivalence():
"""Test different stabilization methods in the computation of modes,
in the presence and/or absence of the discrete symmetries."""
rng = ensure_rng(400)
for n in (12, 20, 40):
for sym in kwant.rmt.sym_list:
# Random onsite and hopping matrices in symmetry class
h_cell = kwant.rmt.gaussian(n, sym, rng=rng)
# Hopping is an offdiagonal block of a Hamiltonian. We rescale it
# to ensure that there are modes at the Fermi level.
h_hop = 10 * kwant.rmt.gaussian(2*n, sym, rng=rng)[:n, n:]
if kwant.rmt.p(sym):
p_mat = np.array(kwant.rmt.h_p_matrix[sym])
p_mat = np.kron(np.identity(n // len(p_mat)), p_mat)
else:
p_mat = None
n = 8
for sym in kwant.rmt.sym_list:
# Random onsite and hopping matrices in symmetry class
h_cell = kwant.rmt.gaussian(n, sym, rng=rng)
# Hopping is an offdiagonal block of a Hamiltonian. We rescale it
# to ensure that there are modes at the Fermi level.
h_hop = 10 * kwant.rmt.gaussian(2*n, sym, rng=rng)[:n, n:]
if kwant.rmt.p(sym):
p_mat = np.array(kwant.rmt.h_p_matrix[sym])
p_mat = np.kron(np.identity(n // len(p_mat)), p_mat)
else:
p_mat = None
if kwant.rmt.t(sym):
t_mat = np.array(kwant.rmt.h_t_matrix[sym])
t_mat = np.kron(np.identity(n // len(t_mat)), t_mat)
else:
t_mat = None
if kwant.rmt.t(sym):
t_mat = np.array(kwant.rmt.h_t_matrix[sym])
t_mat = np.kron(np.identity(n // len(t_mat)), t_mat)
else:
t_mat = None
if kwant.rmt.c(sym):
c_mat = np.kron(np.identity(n // 2), np.diag([1, -1]))
else:
c_mat = None
if kwant.rmt.c(sym):
c_mat = np.kron(np.identity(n // 2), np.diag([1, -1]))
else:
c_mat = None
check_equivalence(h_cell, h_hop, n, sym=sym, particle_hole=p_mat,
chiral=c_mat, time_reversal=t_mat)
check_equivalence(h_cell, h_hop, n, sym=sym, particle_hole=p_mat,
chiral=c_mat, time_reversal=t_mat)
def test_for_all_evs_equal():
......@@ -351,7 +366,7 @@ def test_for_all_evs_equal():
hopping = np.array([[0.0], [-1.0]], dtype=complex)
modes = leads.modes(onsite, hopping)[1]
current_conserving(modes)
assert modes.vecs.shape == (1, 2)
assert modes.vecslmbdainv.shape == (1, 2)
assert modes.nmodes == 1
......@@ -463,6 +478,7 @@ def test_PHS_TRIM_degenerate_ordering():
pmat = np.eye(sum(dims))
onsite = np.zeros(hop.shape, dtype=complex)
prop, stab = leads.modes(onsite, hop, particle_hole=pmat)
current_conserving(stab)
assert np.all([np.any(momentum - np.array([0, -np.pi])) for momentum in
prop.momenta])
assert np.all([np.allclose(wf, pmat.dot(wf.conj())) for wf in
......@@ -485,6 +501,7 @@ def test_PHS_TRIM_degenerate_ordering():
onsite = np.zeros(hop.shape, dtype=complex)
prop, stab = leads.modes(onsite, hop, particle_hole=pmat)
current_conserving(stab)
# By design, all momenta are either 0 or -pi.
assert np.all([np.any(momentum - np.array([0, -np.pi])) for momentum in
prop.momenta])
......@@ -537,6 +554,7 @@ def test_modes_symmetries():
particle_hole=p_mat,
time_reversal=t_mat,
chiral=c_mat)
current_conserving(stab_modes)
wave_functions = prop_modes.wave_functions
momenta = prop_modes.momenta
nmodes = stab_modes.nmodes
......@@ -599,6 +617,7 @@ def test_chiral_symm():
assert_almost_equal(H_hop.dot(C) + C.dot(H_hop), 0)
prop_modes, stab_modes = kwant.physics.leads.modes(H_cell, H_hop,
chiral=C)
current_conserving(stab_modes)
wave_functions = prop_modes.wave_functions
nmodes = stab_modes.nmodes
assert_almost_equal(wave_functions[:, nmodes:],
......@@ -718,8 +737,11 @@ def test_cons_singular_hopping():
projectors = [sparse.csr_matrix(p) for p in projectors]
# Without projectors
modes1 = kwant.physics.leads.modes(H_cell_t, H_hop_t)
current_conserving(modes1[1])
# With projectors
modes2 = kwant.physics.leads.modes(H_cell_t, H_hop_t, projectors=projectors)
modes2 = kwant.physics.leads.modes(H_cell_t, H_hop_t,
projectors=projectors)
current_conserving(modes2[1])
assert_almost_equal(modes1[1].selfenergy(), modes2[1].selfenergy())
def test_cons_rectangular_hopping():
......@@ -740,8 +762,10 @@ def test_cons_rectangular_hopping():
projectors = [sparse.csr_matrix(p) for p in projectors]
# Without projectors
modes1 = kwant.physics.leads.modes(H_cell, H_hop)
current_conserving(modes1[1])
# With projectors
modes2 = kwant.physics.leads.modes(H_cell, H_hop, projectors=projectors)
current_conserving(modes2[1])
assert_almost_equal(modes1[1].selfenergy(), modes2[1].selfenergy())
def check_bdiag_modes(modes, block_rows, block_cols):
......@@ -762,7 +786,7 @@ def check_bdiag_modes(modes, block_rows, block_cols):
def test_cons_blocks_sizes():
# Hamiltonian with a conservation law consisting of three blocks of
# different size.
n = 4
n = 8
# Three blocks of different sizes.
cs = np.diag(n*[-1] + 2*n*[1] + 3*n*[2])
# Onsite and hopping
......@@ -804,8 +828,10 @@ def test_cons_blocks_sizes():
projectors = [sparse.csr_matrix(p) for p in projectors]
# Modes without projectors
modes1 = leads.modes(hc_t, hh_t)
current_conserving(modes1[1])
# With projectors
modes2 = leads.modes(hc_t, hh_t, projectors=projectors)
current_conserving(modes2[1])
assert_almost_equal(modes1[1].selfenergy(), modes2[1].selfenergy())
########
......@@ -859,6 +885,7 @@ def check_identical_modes(modes, block_rows, block_cols):
# If one is empty, so is the other one.
assert not vs[rows1, cols1].size
def test_block_relations_cons_PHS():
# Four blocks. Two identical blocks, each with particle-hole symmetry. Then
# two blocks, related by particle-hole symmetry, but neither possessing it
......@@ -866,7 +893,7 @@ def test_block_relations_cons_PHS():
# law relating the first two, and a discrete symmetry relating the latter
# two. Also check the case when the latter two blocks have singular
# hopping.
n = 20
n = 8
rng = ensure_rng(99)
sym = 'C' # Particle-hole squares to -1
# Onsite and hopping blocks with particle-hole symm
......@@ -900,11 +927,12 @@ def test_block_relations_cons_PHS():
projectors = [sparse.csr_matrix(p) for p in projectors]
# Cover both singular and nonsingular hopping
Ham = [(H_cell, H_hop), (H_cell, H_hop_s)]
for (H_cell, H_hop) in Ham:
ham = [(H_cell, H_hop), (H_cell, H_hop_s)]
for (H_cell, H_hop) in ham:
prop, stab = kwant.physics.leads.modes(H_cell, H_hop,
particle_hole=P_mat,
projectors=projectors)
current_conserving(stab)
nmodes = stab.nmodes
block_nmodes = prop.block_nmodes
vecs, vecslmbdainv = stab.vecs, stab.vecslmbdainv
......@@ -993,12 +1021,13 @@ def check_symm_ham(h_cell, h_hop, sym_op, trans_sign, sym):
assert_almost_equal(sym_op.dot(sym_op), np.eye(sym_op.shape[0])) or \
np.allclose(sym_op.dot(sym_op), -np.eye(sym_op.shape[0]))
def test_blocks_symm_complex_projectors():
# Two blocks of equal size, related by any one of the discrete
# symmetries. Each block by itself has no symmetry. The system is
# transformed with a random unitary, such that the projectors onto the
# blocks are complex.
n = 40
n = 8
rng = ensure_rng(27)
# Symmetry class, sign of H under symmetry transformation.
sym_info = [('AI', 1), ('AII', 1), ('D', -1),
......@@ -1071,6 +1100,7 @@ def test_blocks_symm_complex_projectors():
prop, stab = kwant.physics.leads.modes(H_cell_t, H_hop_t,
chiral=S_t,
projectors=projectors)
current_conserving(stab)
nmodes = stab.nmodes
block_nmodes = prop.block_nmodes
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment