Skip to content
Snippets Groups Projects
Commit 923f4c73 authored by Anton Akhmerov's avatar Anton Akhmerov Committed by Christoph Groth
Browse files

fix indentation error, apply pep8

parent c23aceaf
No related branches found
No related tags found
No related merge requests found
......@@ -23,6 +23,7 @@ from .. import physics, system
LinearSys = namedtuple('LinearSys', ['lhs', 'rhs', 'kept_vars'])
class SparseSolver(object):
"""Solver class for computing physical quantities based on solving
a liner system of equations.
......@@ -210,7 +211,7 @@ class SparseSolver(object):
y, x = np.meshgrid(indices, indices)
sig_sparse = splhsmat((sigma.flat, [x.flat, y.flat]),
lhs.shape)
lhs = lhs + sig_sparse # __iadd__ is not implemented in v0.7
lhs = lhs + sig_sparse # __iadd__ is not implemented in v0.7
if leadnum in out_leads:
kept_vars.extend(list(indices))
if leadnum in in_leads:
......@@ -321,7 +322,6 @@ class SparseSolver(object):
return result
def ldos(self, fsys, energy=0):
"""
Calculate the local density of states of a system at a given energy.
......@@ -431,23 +431,23 @@ class BlockResult(namedtuple('BlockResultTuple', ['data', 'lead_info'])):
"""Return transmission from lead_in to lead_out."""
if isinstance(self.lead_info[lead_out], tuple) and \
isinstance(self.lead_info[lead_in], tuple):
return np.linalg.norm(self.submatrix(lead_out, lead_in))**2
return np.linalg.norm(self.submatrix(lead_out, lead_in)) ** 2
else:
result = np.trace(self._a_ttdagger_a_inv(lead_out, lead_in)).real
if lead_out == lead_in:
# For reflection we have to be more careful
gamma = 1j * (self.lead_info[lead_in] -
self.lead_info[lead_in].conj().T)
gf = self.submatrix(lead_out, lead_in)
# The number of channels is given by the number of
# nonzero eigenvalues of Gamma
# rationale behind the threshold from
# Golub; van Loan, chapter 5.5.8
eps = np.finfo(gamma.dtype).eps * 1000
N = np.sum(np.linalg.eigvalsh(gamma) >
eps * np.linalg.norm(gamma, np.inf))
result += 2 * np.trace(np.dot(gamma, gf)).imag + N
gamma = 1j * (self.lead_info[lead_in] -
self.lead_info[lead_in].conj().T)
gf = self.submatrix(lead_out, lead_in)
# The number of channels is given by the number of
# nonzero eigenvalues of Gamma
# rationale behind the threshold from
# Golub; van Loan, chapter 5.5.8
eps = np.finfo(gamma.dtype).eps * 1000
N = np.sum(np.linalg.eigvalsh(gamma) >
eps * np.linalg.norm(gamma, np.inf))
result += 2 * np.trace(np.dot(gamma, gf)).imag + N
return result
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment