Skip to content
Snippets Groups Projects
Commit 9945ee54 authored by Christoph Groth's avatar Christoph Groth
Browse files

lattice.Shape: code and documentation reformulations

parent 80ab77e8
No related branches found
No related tags found
No related merge requests found
...@@ -471,28 +471,29 @@ class TranslationalSymmetry(builder.Symmetry): ...@@ -471,28 +471,29 @@ class TranslationalSymmetry(builder.Symmetry):
class Shape(object): class Shape(object):
def __init__(self, lattice, function, start): def __init__(self, lattice, function, start):
"""A class for finding all the lattice sites in a shape. """A class for finding all the lattice sites inside a shape.
It uses a flood-fill algorithm, and takes into account When an instance of this class is called, a flood-fill algorithm finds
the symmetry of the builder to which it is provided, or and yields all the sites inside the specified shape starting from the
the symmetry, that is supplied to it after initialization. specified position.
Parameters Parameters
---------- ----------
lattice : Polyatomic or Monoatomic lattice lattice : Polyatomic or Monoatomic lattice
Lattice, to which the resulting sites should belong. Lattice, to which the resulting sites should belong.
function : callable function : callable
A function of real space coordinates, which should A function of real space coordinates that returns a truth value:
return True for coordinates inside the shape, true for coordinates inside the shape, and false otherwise.
and False otherwise.
start : float vector start : float vector
The origin for the flood-fill algorithm. The origin for the flood-fill algorithm.
Notes Notes
----- -----
A ``Shape`` is a callable object: When called with a A `~kwant.builder.Symmetry` or `~kwant.builder.Builder` may be passed as
`~kwant.builder.Builder` as sole argument, an instance of this class will sole argument when calling an instance of this class. This will
return an iterator over all the sites from the shape that are in the fundamental domain of the builder's symmetry. restrict the flood-fill to the fundamental domain of the symmetry (or
the builder's symmetry). Note that unless the shape function has that
symmetry itself, the result may be unexpected.
Because a `~kwant.builder.Builder` can be indexed with functions or Because a `~kwant.builder.Builder` can be indexed with functions or
iterables of functions, ``Shape`` instances (or any non-tuple iterables of functions, ``Shape`` instances (or any non-tuple
...@@ -501,70 +502,52 @@ class Shape(object): ...@@ -501,70 +502,52 @@ class Shape(object):
""" """
self.lat, self.func, self.start = lattice, function, start self.lat, self.func, self.start = lattice, function, start
def __call__(self, builder_or_symmetry=None): def __call__(self, symmetry=None):
"""
Yield all the lattice sites which belong to a certain shape.
Parameters
----------
builder_or_symmetry : Builder or Symmetry instance
The builder to which the site from the shape are added, or
the symmetry, such that the sites from the shape belong to
its fundamental domain. If not provided, trivial symmetry is
used.
Returns
-------
sites : sequence of `Site` objects
all the sites that belong to the lattice and fit inside the shape.
"""
Site = builder.Site Site = builder.Site
lat, func, start = self.lat, self.func, self.start lat, func, start = self.lat, self.func, self.start
try:
symmetry = builder_or_symmetry.symmetry
except AttributeError:
symmetry = builder_or_symmetry
if symmetry is None: if symmetry is None:
symmetry = builder.NoSymmetry() symmetry = builder.NoSymmetry()
elif not isinstance(symmetry, builder.Symmetry):
symmetry = symmetry.symmetry
sym_site = lambda lat, tag: symmetry.to_fd(Site(lat, tag, True)) def sym_site(lat, tag):
return symmetry.to_fd(Site(lat, tag, True))
dim = len(start) dim = len(start)
if dim != lat.prim_vecs.shape[1]: if dim != lat.prim_vecs.shape[1]:
raise ValueError('Dimensionality of start position does not match' raise ValueError('Dimensionality of start position does not match'
' the space dimensionality.') ' the space dimensionality.')
sls = lat.sublattices sls = lat.sublattices
deltas = [ta.array(i) for i in lat._voronoi] deltas = [ta.array(delta) for delta in lat._voronoi]
# Check if no sites are going to be added, to catch a common error. #### Flood-fill ####
empty = True sites = []
for sl in sls: for tag in set(sl.closest(start) for sl in sls):
if func(sym_site(sl, sl.closest(start)).pos): for sl in sls:
empty = False site = sym_site(sl, tag)
if empty: if func(site.pos):
sites.append(site)
if not sites:
msg = 'No sites close to {0} are inside the desired shape.' msg = 'No sites close to {0} are inside the desired shape.'
raise ValueError(msg.format(start)) raise ValueError(msg.format(start))
# Continue to flood fill.
tags = set([sl.closest(start) for sl in sls])
new_sites = [sym_site(sl, tag) for sl in sls for tag in tags]
new_sites = [i for i in new_sites if func(i.pos)]
old_sites = set() old_sites = set()
while new_sites: while sites:
tmp = set() tags = set()
for site in new_sites: for site in sites:
yield site yield site
tags = set((i.tag for i in new_sites)) tags.add(site.tag)
tags = set(tag + delta for tag in tags for delta in deltas)
new_sites = set()
for tag in tags: for tag in tags:
for shift in deltas: for sl in sls:
for sl in sls: site = sym_site(sl, tag)
site = sym_site(sl, tag + shift) if site not in old_sites and site not in sites \
if site not in old_sites and \ and func(site.pos):
site not in new_sites and \ new_sites.add(site)
func(site.pos): old_sites = sites
tmp.add(site) sites = new_sites
old_sites = new_sites
new_sites = tmp
################ Library of lattices (to be extended) ################ Library of lattices (to be extended)
...@@ -584,6 +567,6 @@ def square(a=1, name=''): ...@@ -584,6 +567,6 @@ def square(a=1, name=''):
def honeycomb(a=1, name=''): def honeycomb(a=1, name=''):
"""Create a honeycomb lattice.""" """Create a honeycomb lattice."""
lat = Polyatomic(((a, 0), (0.5 * a, 0.5 * a * sqrt(3))), lat = Polyatomic(((a, 0), (0.5 * a, 0.5 * a * sqrt(3))),
((0, 0), (0, a / sqrt(3))), name=name) ((0, 0), (0, a / sqrt(3))), name=name)
lat.a, lat.b = lat.sublattices lat.a, lat.b = lat.sublattices
return lat return lat
...@@ -56,8 +56,7 @@ def test_shape(): ...@@ -56,8 +56,7 @@ def test_shape():
def in_circle(pos): def in_circle(pos):
return pos[0] ** 2 + pos[1] ** 2 < 3 return pos[0] ** 2 + pos[1] ** 2 < 3
lat = lattice.general(((1, 0), (0.5, sqrt(3) / 2)), lat = lattice.honeycomb()
((0, 0), (0, 1 / sqrt(3))))
sites = list(lat.shape(in_circle, (0, 0))()) sites = list(lat.shape(in_circle, (0, 0))())
sites_alt = list() sites_alt = list()
sl0, sl1 = lat.sublattices sl0, sl1 = lat.sublattices
...@@ -70,6 +69,7 @@ def test_shape(): ...@@ -70,6 +69,7 @@ def test_shape():
assert len(sites) == len(sites_alt) assert len(sites) == len(sites_alt)
assert_equal(set(sites), set(sites_alt)) assert_equal(set(sites), set(sites_alt))
assert_raises(ValueError, lat.shape(in_circle, (10, 10))().next) assert_raises(ValueError, lat.shape(in_circle, (10, 10))().next)
# Check if narrow ribbons work. # Check if narrow ribbons work.
for period in (0, 1), (1, 0), (1, -1): for period in (0, 1), (1, 0), (1, -1):
vec = lat.vec(period) vec = lat.vec(period)
...@@ -79,6 +79,7 @@ def test_shape(): ...@@ -79,6 +79,7 @@ def test_shape():
sites = list(lat.shape(shape, (0, 0))(sym)) sites = list(lat.shape(shape, (0, 0))(sym))
assert len(sites) > 35 assert len(sites) > 35
def test_translational_symmetry(): def test_translational_symmetry():
ts = lattice.TranslationalSymmetry ts = lattice.TranslationalSymmetry
g2 = lattice.general(np.identity(2)) g2 = lattice.general(np.identity(2))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment