Skip to content
Snippets Groups Projects
Commit b5382b60 authored by Rafal Skolasinski's avatar Rafal Skolasinski
Browse files

improve usage of 'substitutions' in 'continuum'

So far substitutions were accepted in form ''string key: sympy expression'',
which was extended to accept form of ''string key: string expression'.
Also 'substitutions' were only used when input 'hamiltonian' was not a sympy
object already, which got alternated to apply them always. Closes #97.
parent bd187da1
No related branches found
No related tags found
No related merge requests found
......@@ -48,13 +48,23 @@ def lambdify(hamiltonian, *, substitutions=None):
proper commutation properties. If a string is provided it will be
converted to a sympy expression using `kwant.continuum.sympify`.
substitutions : dict, defaults to empty
A namespace to be passed to ``kwant.continuum.sympify`` when
``hamiltonian`` is a string. Could be used to simplify matrix input:
``sympify('k_x**2 * s_z', substitutions={'s_z': [[1, 0], [0, -1]]})``.
A namespace of substitutions to be performed on the input
``hamiltonian``. It can be used to simplify input of matrices or
alternate input before proceeding further. Please see examples below.
Example:
--------
>>> f = kwant.continuum.lambdify('a + b', substitutions={'b': 'b + c'})
>>> f(1, 3, 5)
9
>>> subs = {'s_z': [[1, 0], [0, -1]]}
>>> f = kwant.continuum.lambdify('k_z**2 * s_z', substitutions=subs)
>>> f(.25)
array([[ 0.0625, 0. ],
[ 0. , -0.0625]])
"""
expr = hamiltonian
if not isinstance(expr, (sympy.Expr, sympy.matrices.MatrixBase)):
expr = sympify(expr, substitutions)
expr = sympify(hamiltonian, substitutions)
args = [s.name for s in expr.atoms(sympy.Symbol)]
args += [str(f.func) for f in expr.atoms(AppliedUndef, sympy.Function)]
......@@ -68,7 +78,7 @@ def lambdify(hamiltonian, *, substitutions=None):
return f
def sympify(string, substitutions=None, **kwargs):
def sympify(e, substitutions=None):
"""Return sympified object with respect to kwant-specific rules.
This is a modification of ``sympy.sympify`` to apply kwant-specific rules,
......@@ -77,37 +87,63 @@ def sympify(string, substitutions=None, **kwargs):
Parameters
----------
string : string
String representation of a Hamiltonian. Momenta must be defined as
``k_i`` where ``i`` stands for ``x``, ``y``, or ``z``. All present
momenta and coordinates will be interpreted as non commutative.
e : arbitrary expression
An expression that will be converted to a sympy object.
Momenta must be defined as ``k_i`` where ``i`` stands for ``x``, ``y``,
or ``z``. All present momenta and coordinates will be interpreted
as non commutative.
substitutions : dict, defaults to empty
A namespace to be passed internally to ``sympy.sympify``.
Could be used to simplify matrix input:
A namespace of substitutions to be performed on the input ``e``.
It works in a similar way to ``locals`` argument in ``sympy.sympify``
but extends its functionality to i.e. simplify matrix input:
``sympify('k_x**2 * s_z', substitutions={'s_z': [[1, 0], [0, -1]]})``.
**kwargs
Additional arguments that will be passed to ``sympy.sympify``.
Keys should be strings, unless ``e`` is already a sympy object.
Values can be strings or ``sympy`` objects.
Example
-------
>>> from kwant.continuum import sympify
>>> hamiltonian = sympify('k_x * A(x) * k_x + V(x)')
>>> sympify('k_x * A(x) * k_x + V(x)')
k_x*A(x)*k_x + V(x) # as valid sympy object
or
>>> from kwant.continuum import sympify
>>> sympify('k_x**2 + V', substitutions={'V': 'V_0 + V(x)'})
k_x**2 + V(x) + V_0
"""
stored_value = None
sympified_types = (sympy.Expr, sympy.matrices.MatrixBase)
if substitutions is None:
substitutions = {}
substitutions.update(_clash)
# if ``e`` is already a ``sympy`` object we make use of ``substitutions``
# and terminate a code path.
if isinstance(e, sympified_types):
subs = {sympify(k): sympify(v) for k, v in substitutions.items()}
return e.subs(subs)
# if ``e`` is not a sympified type then we proceed with sympifying process,
# we expect all keys in ``substitutions`` to be strings at this moment.
if not all(isinstance(k, str) for k in substitutions):
raise ValueError("If 'e' is not already a sympy object ",
"then keys of 'substitutions' must be strings.")
# sympify values of substitutions before updating it with _clash
substitutions = {k: (sympify(v) if not isinstance(v, sympified_types)
else v)
for k, v in substitutions.items()}
substitutions.update({s: v for s, v in _clash.items()
if s not in substitutions})
try:
stored_value = converter.pop(list, None)
converter[list] = lambda x: sympy.Matrix(x)
substitutions = {k: (sympy.sympify(v, locals=substitutions, **kwargs)
if isinstance(v, (list, str)) else v)
for k, v in substitutions.items()}
hamiltonian = sympy.sympify(string, locals=substitutions, **kwargs)
hamiltonian = sympy.sympify(hamiltonian, **kwargs)
hamiltonian = sympy.sympify(e, locals=substitutions)
# if input is for example ``[[k_x * A(x) * k_x]]`` after the first
# sympify we are getting list of sympy objects, so we call sympify
# second time to obtain ``sympy`` matrices.
hamiltonian = sympy.sympify(hamiltonian)
finally:
if stored_value is not None:
converter[list] = stored_value
......
......@@ -49,9 +49,12 @@ def discretize(hamiltonian, discrete_coordinates=None, lattice_constant=1,
lattice_constant : int or float, default: 1
Lattice constant for the template Builder.
substitutions : dict, defaults to empty
A namespace to be passed to `kwant.continuum.sympify` when
``hamiltonian`` is a string. Could be used to simplify matrix input:
``sympify('k_x**2 * s_z', substitutions={'s_z': [[1, 0], [0, -1]]})``.
A namespace of substitutions to be performed on the input
``hamiltonian``. Values can be either strings or ``sympy`` objects.
It can be used to simplify input of matrices or alternate input before
proceeding further. For example:
``substitutions={'k': 'k_x + I * k_y'}`` or
``substitutions={'s_z': [[1, 0], [0, -1]]}``.
verbose : bool, default: False
If ``True`` additional information will be printed.
......@@ -85,9 +88,12 @@ def discretize_symbolic(hamiltonian, discrete_coordinates=None, substitutions=No
reading present coordinates and momentum operators. Order of discrete
coordinates is always lexical, even if provided otherwise.
substitutions : dict, defaults to empty
A namespace to be passed to `kwant.continuum.sympify` when
``hamiltonian`` is a string. Could be used to simplify matrix input:
``sympify('k_x**2 * s_z', substitutions={'s_z': [[1, 0], [0, -1]]})``.
A namespace of substitutions to be performed on the input
``hamiltonian``. Values can be either strings or ``sympy`` objects.
It can be used to simplify input of matrices or alternate input before
proceeding further. For example:
``substitutions={'k': 'k_x + I * k_y'}`` or
``substitutions={'s_z': [[1, 0], [0, -1]]}``.
verbose : bool, default: False
If ``True`` additional information will be printed.
......@@ -101,8 +107,7 @@ def discretize_symbolic(hamiltonian, discrete_coordinates=None, substitutions=No
discrete_coordinates : sequence of strings
The coordinates that have been discretized.
"""
if not isinstance(hamiltonian, (sympy.Expr, sympy.matrices.MatrixBase)):
hamiltonian = sympify(hamiltonian, substitutions)
hamiltonian = sympify(hamiltonian, substitutions)
atoms_names = [s.name for s in hamiltonian.atoms(sympy.Symbol)]
if any( s == 'a' for s in atoms_names):
......@@ -176,9 +181,12 @@ def build_discretized(tb_hamiltonian, discrete_coordinates,
lattice_constant : int or float, default: 1
Lattice constant for the template Builder.
substitutions : dict, defaults to empty
A namespace to be passed to `kwant.continuum.sympify` when
``tb_hamiltonian`` is a string. Could be used to simplify matrix input:
``sympify('k_x**2 * s_z', substitutions={'s_z': [[1, 0], [0, -1]]})``.
A namespace of substitutions to be performed on the values of input
``tb_hamiltonian``. Values can be either strings or ``sympy`` objects.
It can be used to simplify input of matrices or alternate input before
proceeding further. For example:
``substitutions={'k': 'k_x + I * k_y'}`` or
``substitutions={'s_z': [[1, 0], [0, -1]]}``.
verbose : bool, default: False
If ``True`` additional information will be printed.
......@@ -191,8 +199,7 @@ def build_discretized(tb_hamiltonian, discrete_coordinates,
raise ValueError('Discrete coordinates cannot be empty.')
for k, v in tb_hamiltonian.items():
if not isinstance(v, (sympy.Expr, sympy.matrices.MatrixBase)):
tb_hamiltonian[k] = sympify(v, substitutions)
tb_hamiltonian[k] = sympify(v, substitutions)
discrete_coordinates = sorted(discrete_coordinates)
......
......@@ -11,28 +11,59 @@ from operator import mul
import pytest
def test_sympify():
A, B, C = sympy.symbols('A B C')
x, y, z = position_operators
kx, ky, kz = momentum_operators
com_A, com_B, com_C = sympy.symbols('A B C')
x_op, y_op, z_op = position_operators
kx, ky, kz = momentum_operators
# basics
assert sympify('k_x * A(x) * k_x') == kx * A(x) * kx
assert sympify('[[k_x * A(x) * k_x]]') == sympy.Matrix([kx * A(x) * kx])
# using substitutions
symbolic_pauli = {'sigma_x': msigma(1), 'sigma_y': msigma(2), 'sigma_z': msigma(3)}
got = sympify('k_x * sigma_y + k_y * sigma_x', substitutions=symbolic_pauli)
assert got == kx * symbolic_pauli['sigma_y'] + ky * symbolic_pauli['sigma_x']
got = sympify("sigma_y", substitutions={'sigma_y': "[[0, -1j], [1j, 0]]"})
assert got == symbolic_pauli['sigma_y']
got = sympify("sigma_y", substitutions={'sigma_y': [[0, -sympy.I], [sympy.I, 0]]})
assert got == symbolic_pauli['sigma_y']
@pytest.mark.parametrize('input_expr, output_expr', [
('k_x * A(x) * k_x', kx * com_A(x_op) * kx),
('[[k_x * A(x) * k_x]]', sympy.Matrix([kx * com_A(x_op) * kx])),
('k_x * sigma_y + k_y * sigma_x', kx * msigma(2) + ky * msigma(1)),
('[[k_x*A(x)*k_x, B(x, y)*k_x], [k_x*B(x, y), C*k_y**2]]',
sympy.Matrix([[kx*com_A(x_op)*kx, com_B(x_op, y_op)*kx],
[kx*com_B(x_op, y_op), com_C*ky**2]]))
])
def test_sympify(input_expr, output_expr):
assert sympify(input_expr) == output_expr
assert sympify(sympify(input_expr)) == output_expr
@pytest.mark.parametrize('input_expr, output_expr, subs', [
('k_x', kx + ky, {'k_x': 'k_x + k_y'}),
('x', x_op + y_op, {'x': 'x + y'}),
('A', com_A + com_B, {'A': 'A + B'}),
('A', com_A + com_B(x_op), {'A': 'A + B(x)'}),
('A', msigma(2), {'A': "[[0, -1j], [1j, 0]]"}),
])
def test_sympify_substitutions(input_expr, output_expr, subs):
assert sympify(input_expr, substitutions=subs) == output_expr
assert sympify(sympify(input_expr), substitutions=subs) == output_expr
subs = {k: sympify(v) for k, v in subs.items()}
assert sympify(input_expr, substitutions=subs) == output_expr
assert sympify(sympify(input_expr), substitutions=subs) == output_expr
got = sympify('[[k_x*A(x)*k_x, B(x, y)*k_x], [k_x*B(x, y), C*k_y**2]]')
assert got == sympy.Matrix([[kx*A(x)*kx, B(x, y)*kx], [kx*B(x, y), C*ky**2]])
subs = {sympify(k): sympify(v) for k, v in subs.items()}
assert sympify(sympify(input_expr), substitutions=subs) == output_expr
@pytest.mark.parametrize('input_expr, output_expr, subs', [
('A + k_x**2 * eye(2)',
kx**2 * sympy.eye(2) + msigma(2),
{'A': "[[0, -1j], [1j, 0]]"})
])
def test_sympify_mix_symbol_and_matrx(input_expr, output_expr, subs):
assert sympify(input_expr, substitutions=subs) == output_expr
subs = {k: sympify(v) for k, v in subs.items()}
assert sympify(input_expr, substitutions=subs) == output_expr
......@@ -114,7 +145,16 @@ def test_lambdify(e, should_be, kwargs):
assert e(**kwargs) == should_be(**kwargs)
@pytest.mark.parametrize("e, kwargs", [
("x + y", dict(x=1, y=3, z=5)),
(sympify("x+y"), dict(x=1, y=3, z=5))
])
def test_lambdify_substitutions(e, kwargs):
should_be = lambda x, y, z: x + y + z
subs = {'y': 'y + z'}
e = lambdify(e, substitutions=subs)
assert e(**kwargs) == should_be(**kwargs)
# dispersion_string = ('A * k_x**2 * eye(2) + B * k_y**2 * eye(2)'
......
import sympy
import numpy as np
from .._common import sympify
from ..discretizer import discretize
from ..discretizer import discretize_symbolic
from ..discretizer import build_discretized
......@@ -128,6 +129,24 @@ def test_simple_derivations(commutative):
assert got == out
@pytest.mark.parametrize('e_to_subs, e, subs', [
('k_x', 'k_x + k_y', {'k_x': 'k_x + k_y'}),
('k_x**2 + V', 'k_x**2 + V + V_0', {'V': 'V + V_0'}),
('k_x**2 + A + C', 'k_x**2 + B + 5', {'A': 'B + 5', 'C': 0}),
('x + y + z', '1 + 3 + 5', {'x': 1, 'y': 3, 'z': 5})
])
def test_simple_derivations_with_subs(e_to_subs, e, subs):
# check with strings
one = discretize_symbolic(e_to_subs, 'xyz', substitutions=subs)
two = discretize_symbolic(e, 'xyz')
assert one == two
# check with sympy objects
one = discretize_symbolic(sympify(e_to_subs), 'xyz', substitutions=subs)
two = discretize_symbolic(sympify(e), 'xyz')
assert one == two
def test_simple_derivations_matrix():
test = {
kx**2 : {(0,): 2/a**2, (1,): -1/a**2},
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment