Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
K
kwant
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Joseph Weston
kwant
Commits
e4ce5860
Commit
e4ce5860
authored
11 years ago
by
Christoph Groth
Browse files
Options
Downloads
Patches
Plain Diff
remove unneeded files from sphinxext
parent
c379f04d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
doc/sphinxext/MANIFEST.in
+0
-2
0 additions, 2 deletions
doc/sphinxext/MANIFEST.in
doc/sphinxext/setup.py
+0
-31
0 additions, 31 deletions
doc/sphinxext/setup.py
doc/sphinxext/tests/test_docscrape.py
+0
-615
0 additions, 615 deletions
doc/sphinxext/tests/test_docscrape.py
with
0 additions
and
648 deletions
doc/sphinxext/MANIFEST.in
deleted
100644 → 0
+
0
−
2
View file @
c379f04d
recursive-include tests *.py
include *.txt
This diff is collapsed.
Click to expand it.
doc/sphinxext/setup.py
deleted
100644 → 0
+
0
−
31
View file @
c379f04d
from
distutils.core
import
setup
import
setuptools
import
sys
,
os
version
=
"
0.4
"
setup
(
name
=
"
numpydoc
"
,
packages
=
[
"
numpydoc
"
],
package_dir
=
{
"
numpydoc
"
:
""
},
version
=
version
,
description
=
"
Sphinx extension to support docstrings in Numpy format
"
,
# classifiers from http://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers
=
[
"
Development Status :: 3 - Alpha
"
,
"
Environment :: Plugins
"
,
"
License :: OSI Approved :: BSD License
"
,
"
Topic :: Documentation
"
],
keywords
=
"
sphinx numpy
"
,
author
=
"
Pauli Virtanen and others
"
,
author_email
=
"
pav@iki.fi
"
,
url
=
"
http://github.com/numpy/numpy/tree/master/doc/sphinxext
"
,
license
=
"
BSD
"
,
zip_safe
=
False
,
install_requires
=
[
"
Sphinx >= 1.0.1
"
],
package_data
=
{
'
numpydoc
'
:
'
tests
'
,
''
:
''
},
entry_points
=
{
"
console_scripts
"
:
[
"
autosummary_generate = numpydoc.autosummary_generate:main
"
,
],
},
)
This diff is collapsed.
Click to expand it.
doc/sphinxext/tests/test_docscrape.py
deleted
100644 → 0
+
0
−
615
View file @
c379f04d
# -*- encoding:utf-8 -*-
import
sys
,
os
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
..
'
))
from
docscrape
import
NumpyDocString
,
FunctionDoc
,
ClassDoc
from
docscrape_sphinx
import
SphinxDocString
,
SphinxClassDoc
from
nose.tools
import
*
doc_txt
=
'''
\
numpy.multivariate_normal(mean, cov, shape=None, spam=None)
Draw values from a multivariate normal distribution with specified
mean and covariance.
The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.
Parameters
----------
mean : (N,) ndarray
Mean of the N-dimensional distribution.
.. math::
(1+2+3)/3
cov : (N,N) ndarray
Covariance matrix of the distribution.
shape : tuple of ints
Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
Returns
-------
out : ndarray
The drawn samples, arranged according to `shape`. If the
shape given is (m,n,...), then the shape of `out` is is
(m,n,...,N).
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
Other Parameters
----------------
spam : parrot
A parrot off its mortal coil.
Raises
------
RuntimeError
Some error
Warns
-----
RuntimeWarning
Some warning
Warnings
--------
Certain warnings apply.
Notes
-----
Instead of specifying the full covariance matrix, popular
approximations include:
- Spherical covariance (`cov` is a multiple of the identity matrix)
- Diagonal covariance (`cov` has non-negative elements only on the diagonal)
This geometrical property can be seen in two dimensions by plotting
generated data-points:
>>>
mean
=
[
0
,
0
]
>>>
cov
=
[[
1
,
0
],[
0
,
100
]]
# diagonal covariance, points lie on x or y-axis
>>>
x
,
y
=
multivariate_normal
(
mean
,
cov
,
5000
).
T
>>>
plt
.
plot
(
x
,
y
,
'
x
'
);
plt
.
axis
(
'
equal
'
);
plt
.
show
()
Note that the covariance matrix must be symmetric and non-negative
definite.
References
----------
.. [1] A. Papoulis,
"
Probability, Random Variables, and Stochastic
Processes,
"
3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork,
"
Pattern Classification,
"
2nd ed., Wiley, 2001.
See Also
--------
some, other, funcs
otherfunc : relationship
Examples
--------
>>>
mean
=
(
1
,
2
)
>>>
cov
=
[[
1
,
0
],[
1
,
0
]]
>>>
x
=
multivariate_normal
(
mean
,
cov
,(
3
,
3
))
>>>
print
x
.
shape
(
3
,
3
,
2
)
The following is probably true, given that 0.6 is roughly twice the
standard deviation:
>>>
print
list
(
(
x
[
0
,
0
,:]
-
mean
)
<
0.6
)
[
True
,
True
]
.. index:: random
:refguide: random;distributions, random;gauss
'''
doc
=
NumpyDocString
(
doc_txt
)
def
test_signature
():
assert
doc
[
'
Signature
'
].
startswith
(
'
numpy.multivariate_normal(
'
)
assert
doc
[
'
Signature
'
].
endswith
(
'
spam=None)
'
)
def
test_summary
():
assert
doc
[
'
Summary
'
][
0
].
startswith
(
'
Draw values
'
)
assert
doc
[
'
Summary
'
][
-
1
].
endswith
(
'
covariance.
'
)
def
test_extended_summary
():
assert
doc
[
'
Extended Summary
'
][
0
].
startswith
(
'
The multivariate normal
'
)
def
test_parameters
():
assert_equal
(
len
(
doc
[
'
Parameters
'
]),
3
)
assert_equal
([
n
for
n
,
_
,
_
in
doc
[
'
Parameters
'
]],
[
'
mean
'
,
'
cov
'
,
'
shape
'
])
arg
,
arg_type
,
desc
=
doc
[
'
Parameters
'
][
1
]
assert_equal
(
arg_type
,
'
(N,N) ndarray
'
)
assert
desc
[
0
].
startswith
(
'
Covariance matrix
'
)
assert
doc
[
'
Parameters
'
][
0
][
-
1
][
-
2
]
==
'
(1+2+3)/3
'
def
test_other_parameters
():
assert_equal
(
len
(
doc
[
'
Other Parameters
'
]),
1
)
assert_equal
([
n
for
n
,
_
,
_
in
doc
[
'
Other Parameters
'
]],
[
'
spam
'
])
arg
,
arg_type
,
desc
=
doc
[
'
Other Parameters
'
][
0
]
assert_equal
(
arg_type
,
'
parrot
'
)
assert
desc
[
0
].
startswith
(
'
A parrot off its mortal coil
'
)
def
test_returns
():
assert_equal
(
len
(
doc
[
'
Returns
'
]),
1
)
arg
,
arg_type
,
desc
=
doc
[
'
Returns
'
][
0
]
assert_equal
(
arg
,
'
out
'
)
assert_equal
(
arg_type
,
'
ndarray
'
)
assert
desc
[
0
].
startswith
(
'
The drawn samples
'
)
assert
desc
[
-
1
].
endswith
(
'
distribution.
'
)
def
test_notes
():
assert
doc
[
'
Notes
'
][
0
].
startswith
(
'
Instead
'
)
assert
doc
[
'
Notes
'
][
-
1
].
endswith
(
'
definite.
'
)
assert_equal
(
len
(
doc
[
'
Notes
'
]),
17
)
def
test_references
():
assert
doc
[
'
References
'
][
0
].
startswith
(
'
..
'
)
assert
doc
[
'
References
'
][
-
1
].
endswith
(
'
2001.
'
)
def
test_examples
():
assert
doc
[
'
Examples
'
][
0
].
startswith
(
'
>>>
'
)
assert
doc
[
'
Examples
'
][
-
1
].
endswith
(
'
True]
'
)
def
test_index
():
assert_equal
(
doc
[
'
index
'
][
'
default
'
],
'
random
'
)
print
doc
[
'
index
'
]
assert_equal
(
len
(
doc
[
'
index
'
]),
2
)
assert_equal
(
len
(
doc
[
'
index
'
][
'
refguide
'
]),
2
)
def
non_blank_line_by_line_compare
(
a
,
b
):
a
=
[
l
for
l
in
a
.
split
(
'
\n
'
)
if
l
.
strip
()]
b
=
[
l
for
l
in
b
.
split
(
'
\n
'
)
if
l
.
strip
()]
for
n
,
line
in
enumerate
(
a
):
if
not
line
==
b
[
n
]:
raise
AssertionError
(
"
Lines %s of a and b differ:
"
"
\n
>>> %s
\n
<<< %s
\n
"
%
(
n
,
line
,
b
[
n
]))
def
test_str
():
non_blank_line_by_line_compare
(
str
(
doc
),
"""
numpy.multivariate_normal(mean, cov, shape=None, spam=None)
Draw values from a multivariate normal distribution with specified
mean and covariance.
The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.
Parameters
----------
mean : (N,) ndarray
Mean of the N-dimensional distribution.
.. math::
(1+2+3)/3
cov : (N,N) ndarray
Covariance matrix of the distribution.
shape : tuple of ints
Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
Returns
-------
out : ndarray
The drawn samples, arranged according to `shape`. If the
shape given is (m,n,...), then the shape of `out` is is
(m,n,...,N).
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
Other Parameters
----------------
spam : parrot
A parrot off its mortal coil.
Raises
------
RuntimeError :
Some error
Warns
-----
RuntimeWarning :
Some warning
Warnings
--------
Certain warnings apply.
See Also
--------
`some`_, `other`_, `funcs`_
`otherfunc`_
relationship
Notes
-----
Instead of specifying the full covariance matrix, popular
approximations include:
- Spherical covariance (`cov` is a multiple of the identity matrix)
- Diagonal covariance (`cov` has non-negative elements only on the diagonal)
This geometrical property can be seen in two dimensions by plotting
generated data-points:
>>>
mean
=
[
0
,
0
]
>>>
cov
=
[[
1
,
0
],[
0
,
100
]]
# diagonal covariance, points lie on x or y-axis
>>>
x
,
y
=
multivariate_normal
(
mean
,
cov
,
5000
).
T
>>>
plt
.
plot
(
x
,
y
,
'
x
'
);
plt
.
axis
(
'
equal
'
);
plt
.
show
()
Note that the covariance matrix must be symmetric and non-negative
definite.
References
----------
.. [1] A. Papoulis,
"
Probability, Random Variables, and Stochastic
Processes,
"
3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork,
"
Pattern Classification,
"
2nd ed., Wiley, 2001.
Examples
--------
>>>
mean
=
(
1
,
2
)
>>>
cov
=
[[
1
,
0
],[
1
,
0
]]
>>>
x
=
multivariate_normal
(
mean
,
cov
,(
3
,
3
))
>>>
print
x
.
shape
(
3
,
3
,
2
)
The following is probably true, given that 0.6 is roughly twice the
standard deviation:
>>>
print
list
(
(
x
[
0
,
0
,:]
-
mean
)
<
0.6
)
[
True
,
True
]
.. index:: random
:refguide: random;distributions, random;gauss
"""
)
def
test_sphinx_str
():
sphinx_doc
=
SphinxDocString
(
doc_txt
)
non_blank_line_by_line_compare
(
str
(
sphinx_doc
),
"""
.. index:: random
single: random;distributions, random;gauss
Draw values from a multivariate normal distribution with specified
mean and covariance.
The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.
:Parameters:
**mean** : (N,) ndarray
Mean of the N-dimensional distribution.
.. math::
(1+2+3)/3
**cov** : (N,N) ndarray
Covariance matrix of the distribution.
**shape** : tuple of ints
Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
:Returns:
**out** : ndarray
The drawn samples, arranged according to `shape`. If the
shape given is (m,n,...), then the shape of `out` is is
(m,n,...,N).
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
:Other Parameters:
**spam** : parrot
A parrot off its mortal coil.
:Raises:
**RuntimeError** :
Some error
:Warns:
**RuntimeWarning** :
Some warning
.. warning::
Certain warnings apply.
.. seealso::
:obj:`some`, :obj:`other`, :obj:`funcs`
:obj:`otherfunc`
relationship
.. rubric:: Notes
Instead of specifying the full covariance matrix, popular
approximations include:
- Spherical covariance (`cov` is a multiple of the identity matrix)
- Diagonal covariance (`cov` has non-negative elements only on the diagonal)
This geometrical property can be seen in two dimensions by plotting
generated data-points:
>>>
mean
=
[
0
,
0
]
>>>
cov
=
[[
1
,
0
],[
0
,
100
]]
# diagonal covariance, points lie on x or y-axis
>>>
x
,
y
=
multivariate_normal
(
mean
,
cov
,
5000
).
T
>>>
plt
.
plot
(
x
,
y
,
'
x
'
);
plt
.
axis
(
'
equal
'
);
plt
.
show
()
Note that the covariance matrix must be symmetric and non-negative
definite.
.. rubric:: References
.. [1] A. Papoulis,
"
Probability, Random Variables, and Stochastic
Processes,
"
3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork,
"
Pattern Classification,
"
2nd ed., Wiley, 2001.
.. only:: latex
[1]_, [2]_
.. rubric:: Examples
>>>
mean
=
(
1
,
2
)
>>>
cov
=
[[
1
,
0
],[
1
,
0
]]
>>>
x
=
multivariate_normal
(
mean
,
cov
,(
3
,
3
))
>>>
print
x
.
shape
(
3
,
3
,
2
)
The following is probably true, given that 0.6 is roughly twice the
standard deviation:
>>>
print
list
(
(
x
[
0
,
0
,:]
-
mean
)
<
0.6
)
[
True
,
True
]
"""
)
doc2
=
NumpyDocString
(
"""
Returns array of indices of the maximum values of along the given axis.
Parameters
----------
a : {array_like}
Array to look in.
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
"""
)
def
test_parameters_without_extended_description
():
assert_equal
(
len
(
doc2
[
'
Parameters
'
]),
2
)
doc3
=
NumpyDocString
(
"""
my_signature(*params, **kwds)
Return this and that.
"""
)
def
test_escape_stars
():
signature
=
str
(
doc3
).
split
(
'
\n
'
)[
0
]
assert_equal
(
signature
,
'
my_signature(\*params, \*\*kwds)
'
)
doc4
=
NumpyDocString
(
"""
a.conj()
Return an array with all complex-valued elements conjugated.
"""
)
def
test_empty_extended_summary
():
assert_equal
(
doc4
[
'
Extended Summary
'
],
[])
doc5
=
NumpyDocString
(
"""
a.something()
Raises
------
LinAlgException
If array is singular.
Warns
-----
SomeWarning
If needed
"""
)
def
test_raises
():
assert_equal
(
len
(
doc5
[
'
Raises
'
]),
1
)
name
,
_
,
desc
=
doc5
[
'
Raises
'
][
0
]
assert_equal
(
name
,
'
LinAlgException
'
)
assert_equal
(
desc
,[
'
If array is singular.
'
])
def
test_warns
():
assert_equal
(
len
(
doc5
[
'
Warns
'
]),
1
)
name
,
_
,
desc
=
doc5
[
'
Warns
'
][
0
]
assert_equal
(
name
,
'
SomeWarning
'
)
assert_equal
(
desc
,[
'
If needed
'
])
def
test_see_also
():
doc6
=
NumpyDocString
(
"""
z(x,theta)
See Also
--------
func_a, func_b, func_c
func_d : some equivalent func
foo.func_e : some other func over
multiple lines
func_f, func_g, :meth:`func_h`, func_j,
func_k
:obj:`baz.obj_q`
:class:`class_j`: fubar
foobar
"""
)
assert
len
(
doc6
[
'
See Also
'
])
==
12
for
func
,
desc
,
role
in
doc6
[
'
See Also
'
]:
if
func
in
(
'
func_a
'
,
'
func_b
'
,
'
func_c
'
,
'
func_f
'
,
'
func_g
'
,
'
func_h
'
,
'
func_j
'
,
'
func_k
'
,
'
baz.obj_q
'
):
assert
(
not
desc
)
else
:
assert
(
desc
)
if
func
==
'
func_h
'
:
assert
role
==
'
meth
'
elif
func
==
'
baz.obj_q
'
:
assert
role
==
'
obj
'
elif
func
==
'
class_j
'
:
assert
role
==
'
class
'
else
:
assert
role
is
None
if
func
==
'
func_d
'
:
assert
desc
==
[
'
some equivalent func
'
]
elif
func
==
'
foo.func_e
'
:
assert
desc
==
[
'
some other func over
'
,
'
multiple lines
'
]
elif
func
==
'
class_j
'
:
assert
desc
==
[
'
fubar
'
,
'
foobar
'
]
def
test_see_also_print
():
class
Dummy
(
object
):
"""
See Also
--------
func_a, func_b
func_c : some relationship
goes here
func_d
"""
pass
obj
=
Dummy
()
s
=
str
(
FunctionDoc
(
obj
,
role
=
'
func
'
))
assert
(
'
:func:`func_a`, :func:`func_b`
'
in
s
)
assert
(
'
some relationship
'
in
s
)
assert
(
'
:func:`func_d`
'
in
s
)
doc7
=
NumpyDocString
(
"""
Doc starts on second line.
"""
)
def
test_empty_first_line
():
assert
doc7
[
'
Summary
'
][
0
].
startswith
(
'
Doc starts
'
)
def
test_no_summary
():
str
(
SphinxDocString
(
"""
Parameters
----------
"""
))
def
test_unicode
():
doc
=
SphinxDocString
(
"""
öäöäöäöäöåååå
öäöäöäööäååå
Parameters
----------
ååå : äää
ööö
Returns
-------
ååå : ööö
äää
"""
)
assert
doc
[
'
Summary
'
][
0
]
==
u
'
öäöäöäöäöåååå
'
.
encode
(
'
utf-8
'
)
def
test_plot_examples
():
cfg
=
dict
(
use_plots
=
True
)
doc
=
SphinxDocString
(
"""
Examples
--------
>>>
import
matplotlib.pyplot
as
plt
>>>
plt
.
plot
([
1
,
2
,
3
],[
4
,
5
,
6
])
>>>
plt
.
show
()
"""
,
config
=
cfg
)
assert
'
plot::
'
in
str
(
doc
),
str
(
doc
)
doc
=
SphinxDocString
(
"""
Examples
--------
.. plot::
import matplotlib.pyplot as plt
plt.plot([1,2,3],[4,5,6])
plt.show()
"""
,
config
=
cfg
)
assert
str
(
doc
).
count
(
'
plot::
'
)
==
1
,
str
(
doc
)
def
test_class_members
():
class
Dummy
(
object
):
"""
Dummy class.
"""
def
spam
(
self
,
a
,
b
):
"""
Spam
\n\n
Spam spam.
"""
pass
def
ham
(
self
,
c
,
d
):
"""
Cheese
\n\n
No cheese.
"""
pass
for
cls
in
(
ClassDoc
,
SphinxClassDoc
):
doc
=
cls
(
Dummy
,
config
=
dict
(
show_class_members
=
False
))
assert
'
Methods
'
not
in
str
(
doc
),
(
cls
,
str
(
doc
))
assert
'
spam
'
not
in
str
(
doc
),
(
cls
,
str
(
doc
))
assert
'
ham
'
not
in
str
(
doc
),
(
cls
,
str
(
doc
))
doc
=
cls
(
Dummy
,
config
=
dict
(
show_class_members
=
True
))
assert
'
Methods
'
in
str
(
doc
),
(
cls
,
str
(
doc
))
assert
'
spam
'
in
str
(
doc
),
(
cls
,
str
(
doc
))
assert
'
ham
'
in
str
(
doc
),
(
cls
,
str
(
doc
))
if
cls
is
SphinxClassDoc
:
assert
'
.. autosummary::
'
in
str
(
doc
),
str
(
doc
)
if
__name__
==
"
__main__
"
:
import
nose
nose
.
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment