Skip to content
Snippets Groups Projects
Commit e662097a authored by Christoph Groth's avatar Christoph Groth Committed by Joseph Weston
Browse files

migrate 'wraparound' module to Kwant

parent 4ee93ee0
No related branches found
No related tags found
No related merge requests found
# Copyright 2016 Christoph Groth (INAC / CEA Grenoble).
#
# This file is subject to the 2-clause BSD license as found at
# http://kwant-project.org/license.
"""Replace symmetries of Kwant builders with momentum parameters to the
system."""
import sys
import collections
import cmath
import numpy as np
import tinyarray as ta
import kwant
from kwant.builder import herm_conj
if sys.version_info >= (3, 0):
def _hashable(obj):
return isinstance(obj, collections.Hashable)
else:
def _hashable(obj):
return (isinstance(obj, collections.Hashable)
and not isinstance(obj, np.ndarray))
def _memoize(f):
"""Decorator to memoize a function that works even with unhashable args.
This decorator will even work with functions whose args are not hashable.
The cache key is made up by the hashable arguments and the ids of the
non-hashable args. It is up to the user to make sure that non-hashable
args do not change during the lifetime of the decorator.
This decorator will keep reevaluating functions that return None.
"""
def lookup(*args):
key = tuple(arg if _hashable(arg) else id(arg) for arg in args)
result = cache.get(key)
if result is None:
cache[key] = result = f(*args)
return result
cache = {}
return lookup
def wraparound(builder, keep=None):
"""Replace translational symmetries by momentum parameters.
A new Builder instance is returned. By default, each symmetry is replaced
by one scalar momentum parameter that is appended to the already existing
arguments of the system. Optionally, one symmetry may be kept by using the
`keep` argument.
"""
@_memoize
def bind_site(val):
assert callable(val)
return lambda a, *args: val(a, *args[:mnp])
@_memoize
def bind_hopping_as_site(elem, val):
def f(a, *args):
phase = cmath.exp(1j * ta.dot(elem, args[mnp:]))
v = val(a, sym.act(elem, a), *args[:mnp]) if callable(val) else val
pv = phase * v
return pv + herm_conj(pv)
return f
@_memoize
def bind_hopping(elem, val):
def f(a, b, *args):
phase = cmath.exp(1j * ta.dot(elem, args[mnp:]))
v = val(a, sym.act(elem, b), *args[:mnp]) if callable(val) else val
return phase * v
return f
@_memoize
def bind_sum(*vals):
return lambda *args: sum((val(*args) if callable(val) else val)
for val in vals)
if keep is None:
ret = kwant.Builder()
sym = builder.symmetry
else:
periods = list(builder.symmetry.periods)
ret = kwant.Builder(kwant.TranslationalSymmetry(periods.pop(keep)))
sym = kwant.TranslationalSymmetry(*periods)
sites = {}
hops = collections.defaultdict(list)
mnp = -len(sym.periods) # Used by the bound functions above.
# Store lists of values, so that multiple values can be assigned to the
# same site or hopping.
for site, val in builder.site_value_pairs():
sites[site] = [bind_site(val) if callable(val) else val]
for hop, val in builder.hopping_value_pairs():
a, b = hop
b_dom = sym.which(b)
b_wa = sym.act(-b_dom, b)
if a == b_wa:
# The hopping gets wrapped-around into an onsite Hamiltonian.
# Since site `a` already exists in the system, we can simply append.
sites[a].append(bind_hopping_as_site(b_dom, val))
else:
# The hopping remains a hopping.
if b != b_wa or callable(val):
# The hopping got wrapped-around or is a function.
val = bind_hopping(b_dom, val)
# Make sure that there is only one entry for each hopping
# (pointing in one direction).
if (b_wa, a) in hops:
assert (a, b_wa) not in hops
if callable(val):
assert not isinstance(val, kwant.builder.HermConjOfFunc)
val = kwant.builder.HermConjOfFunc(val)
else:
val = kwant.builder.herm_conj(val)
hops[b_wa, a].append(val)
else:
hops[a, b_wa].append(val)
# Copy stuff into result builder, converting lists of more than one element
# into summing functions.
for site, vals in sites.items():
ret[site] = vals[0] if len(vals) == 1 else bind_sum(*vals)
for hop, vals in hops.items():
ret[hop] = vals[0] if len(vals) == 1 else bind_sum(*vals)
return ret
def plot_bands_2d(syst, args=(), momenta=(31, 31)):
"""Plot the bands of a system with two wrapped-around symmetries."""
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot
if not isinstance(syst, kwant.system.FiniteSystem):
raise TypeError("Need a system without symmetries.")
fig = pyplot.figure()
ax = fig.gca(projection='3d')
kxs = np.linspace(-np.pi, np.pi, momenta[0])
kys = np.linspace(-np.pi, np.pi, momenta[1])
energies = [[np.sort(np.linalg.eigvalsh(syst.hamiltonian_submatrix(
args + (kx, ky), sparse=False)).real)
for ky in kys] for kx in kxs]
energies = np.array(energies)
mesh_x, mesh_y = np.meshgrid(kxs, kys)
for i in range(energies.shape[-1]):
ax.plot_wireframe(mesh_x, mesh_y, energies[:, :, i],
rstride=1, cstride=1)
pyplot.show()
def _simple_syst(lat, E=0, t=1+1j):
"""Create a builder for a simple infinite system."""
sym = kwant.TranslationalSymmetry(lat.vec((1, 0)), lat.vec((0, 1)))
# Build system with 2d periodic BCs. This system cannot be finalized in
# Kwant <= 1.2.
syst = kwant.Builder(sym)
syst[lat.shape(lambda p: True, (0, 0))] = E
syst[lat.neighbors(1)] = t
return syst
def test_consistence_with_bands(kx=1.9, nkys=31):
kys = np.linspace(-np.pi, np.pi, nkys)
for lat in [kwant.lattice.honeycomb(), kwant.lattice.square()]:
syst = _simple_syst(lat)
wa_keep_1 = wraparound(syst, keep=1).finalized()
wa_keep_none = wraparound(syst).finalized()
bands = kwant.physics.Bands(wa_keep_1, (kx,))
energies_a = [bands(ky) for ky in
(kys if kwant.__version__ > "1.0" else reversed(kys))]
energies_b = []
for ky in kys:
H = wa_keep_none.hamiltonian_submatrix((kx, ky), sparse=False)
evs = np.sort(np.linalg.eigvalsh(H).real)
energies_b.append(evs)
np.testing.assert_almost_equal(energies_a, energies_b)
def test_opposite_hoppings():
lat = kwant.lattice.square()
for val in [1j, lambda a, b: 1j]:
syst = kwant.Builder(kwant.TranslationalSymmetry((1, 1)))
syst[ (lat(x, 0) for x in [-1, 0]) ] = 0
syst[lat(0, 0), lat(-1, 0)] = val
syst[lat(-1, 0), lat(-1, -1)] = val
fsyst = wraparound(syst).finalized()
np.testing.assert_almost_equal(fsyst.hamiltonian_submatrix([0]), 0)
def test_value_types(k=(-1.1, 0.5), E=0, t=1):
for lat in [kwant.lattice.honeycomb(), kwant.lattice.square()]:
syst = wraparound(_simple_syst(lat, E, t)).finalized()
H = syst.hamiltonian_submatrix(k, sparse=False)
for E1, t1 in [(float(E), float(t)),
(np.array([[E]], float), np.array([[1]], float)),
(ta.array([[E]], float), ta.array([[1]], float))]:
for E2 in [E1, lambda a: E1]:
for t2 in [t1, lambda a, b: t1]:
syst = wraparound(_simple_syst(lat, E2, t2)).finalized()
H_alt = syst.hamiltonian_submatrix(k, sparse=False)
np.testing.assert_equal(H_alt, H)
def test():
test_consistence_with_bands()
test_opposite_hoppings()
test_value_types()
def demo():
"""Calculate and plot the band structure of graphene."""
lat = kwant.lattice.honeycomb()
syst = wraparound(_simple_syst(lat)).finalized()
plot_bands_2d(syst)
if __name__ == '__main__':
test()
demo()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment