from where we find the condition that $v_{1,1}=v_{1,2}$: an important property of eigenvalue equations is that the eigenvectors are only fixed up to an *overall normalisation condition*. This should be clear from its definition: if a vector $\vec{v}$ satisfies $A\vec{v}=\lambda\vec{v} $,
then the vector $\vec{v}'=c \vec{v}$ with $c$ some constant will also satisfy the same equation. So then we find that the eigenvalue $\lambda_1$ has associated an eigenvector
from where we find the condition that $v_{1,1}=v_{1,2}$.
An important property of eigenvalue equations is that the eigenvectors are only fixed up to an *overall normalisation condition*.
This should be clear from its definition: if a vector $\vec{v}$ satisfies $A\vec{v}=\lambda\vec{v} $,
then the vector $\vec{v}'=c \vec{v}$ with $c$ some constant will also satisfy the same equation. So then we find that the eigenvalue $\lambda_1$ has an associated eigenvector