Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Mathematics for Quantum Physics
lectures
Commits
41831ab0
Commit
41831ab0
authored
4 years ago
by
Michael Wimmer
Browse files
Options
Downloads
Patches
Plain Diff
fix some math
parent
19b3ac1c
No related branches found
Branches containing commit
No related tags found
1 merge request
!9
DifferentialEquationsLecture2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/8_differential_equations_2.md
+37
-37
37 additions, 37 deletions
src/8_differential_equations_2.md
with
37 additions
and
37 deletions
src/8_differential_equations_2.md
+
37
−
37
View file @
41831ab0
...
...
@@ -3,7 +3,7 @@
In the previous lecture, we focused on first order linear differential equations
as well as systems of such equations. In this lecture we switch focus to DE's
which involve higher derivatives of the function we would like to solve for. To
facilitate this change we are going to change notation. In the previous lecture
f
`
%
acilitate this change we are going to change notation. In the previous lecture
we wrote differential equations for $x(t)$. In this lecture we will write DE's
of $y(x)$, where $y$ is an unknown function and $x$ is the independent variable.
For this purpose we make the following definitions,
...
...
@@ -57,64 +57,64 @@ $$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$
To check that the $n$ solutions form a basis, it is sufficient to verify
$$ det
\b
egin{bmatrix}
f_1(x) &
\
h
dots & f_{n}(x)
\\
f_1 ' (x) &
\
h
dots & f_{n}'(x)
\\
f_1(x) &
\
c
dots & f_{n}(x)
\\
f_1 ' (x) &
\
c
dots & f_{n}'(x)
\\
\v
dots &
\v
dots &
\v
dots
\\
f^{(n-1)}_{1} (x) &
\
h
dots & f^{(n-1)}_{n} (x)
\\
f^{(n-1)}_{1} (x) &
\
c
dots & f^{(n-1)}_{n} (x)
\\
\e
nd{bmatrix}
\n
eq 0.$$
The determinant in the preceding line is called the
*Wronski determinant*
. In
particular, to determine solutions, we need to find the eigenvalues of
$$
**A**
=
\b
egin{bmatrix}
0 & 1 & 0 &
\
h
dots & 0
\\
0 & 0 & 1 &
\
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
-a_0 & -a_1 & -a_2 &
\
h
dots & -a_{n-1}
\\
$$
A
=
\b
egin{bmatrix}
0 & 1 & 0 &
\
c
dots & 0
\\
0 & 0 & 1 &
\
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
-a_0 & -a_1 & -a_2 &
\
c
dots & -a_{n-1}
\\
\e
nd{bmatrix}.$$
It is possible to show that
$$det(
**A**
-
\l
ambda
\m
athbbm{1}
) = -P(
\l
ambda),$$
$$det(
A
-
\l
ambda
I
) = -P(
\l
ambda),$$
in which $P(
\l
ambda)$ is the characteristic polynomial of the system matrix $
**A**
$,
in which $P(
\l
ambda)$ is the characteristic polynomial of the system matrix $
A
$,
$$P(
\l
ambda) =
\l
ambda^n + a_{n-1}
\l
ambda^{n-1} +
\c
dots + a_0.$$
As we demonstrate below, the proof relies on the co-factor expansion technique
for calculating a determinant.
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) =
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
h
dots & 0
\\
0 &
\l
ambda & -1 &
\
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
a_0 & a_1 & a_2 &
\
h
dots & a_{n-1} +
\l
ambda
\\
$$- det(
A
-
\l
ambda
I
) =
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
c
dots & 0
\\
0 &
\l
ambda & -1 &
\
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
a_0 & a_1 & a_2 &
\
c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} $$
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
h
dots & 0
\\
0 &
\l
ambda & -1 &
\
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
h
dots & a_{n-1} +
\l
ambda
\\
$$- det(
A
-
\l
ambda
I
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
c
dots & 0
\\
0 &
\l
ambda & -1 &
\
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + (-1)^{n+1}a_0 det
\b
egin{bmatrix}
-1 & 0 & 0 &
\
h
dots & 0
\\
\l
ambda & -1 & 0 &
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
0 & 0 &
\
h
dots &
\l
ambda & -1
\\
-1 & 0 & 0 &
\
c
dots & 0
\\
\l
ambda & -1 & 0 &
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
0 & 0 &
\
c
dots &
\l
ambda & -1
\\
\e
nd{bmatrix}$$
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
h
dots & 0
\\
0 &
\l
ambda & -1 &
\
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
h
dots & a_{n-1} +
\l
ambda
\\
$$- det(
A
-
\l
ambda
I
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
c
dots & 0
\\
0 &
\l
ambda & -1 &
\
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
h
dots & 0
\\
0 &
\l
ambda & -1 &
\
h
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
h
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
h
dots & a_{n-1} +
\l
ambda
\\
$$- det(
A
-
\l
ambda
I
) =
\l
ambda det
\b
egin{bmatrix}
\l
ambda & -1 & 0 &
\
c
dots & 0
\\
0 &
\l
ambda & -1 &
\
c
dots & 0
\\
\v
dots &
\v
dots &
\v
dots &
\
c
dots &
\v
dots
\\
a_1 & a_2 & a_3 &
\
c
dots & a_{n-1} +
\l
ambda
\\
\e
nd{bmatrix} + a_0$$
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) =
\l
ambda (
\l
ambda (
\l
ambda
\c
dots + a_2) + a_1) + a_0$$
$$- det(
**A**
-
\l
ambda
\m
athbbm{1}
) = P(
\l
ambda).$$
$$- det(
A
-
\l
ambda
I
) =
\l
ambda (
\l
ambda (
\l
ambda
\c
dots + a_2) + a_1) + a_0$$
$$- det(
A
-
\l
ambda
I
) = P(
\l
ambda).$$
In the second last line of the proof we indicated that the method of co-factor
expansion demonstrated is repeated an additional $n-2$ times. This completes the
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment