Skip to content
Snippets Groups Projects
Commit 7775aee0 authored by Michael Wimmer's avatar Michael Wimmer
Browse files

use example environment

parent 9f7f7938
Branches
No related tags found
No related merge requests found
Pipeline #42641 passed
......@@ -69,11 +69,11 @@ complex conjugate of $z_2$:
$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{(a_1 a_2 + b_1 b_2) + (-a_1 b_2 + a_2 b_1) {{\rm i}}}{a_2^2 + b_2^2}.$$
Check this!
**Example**
$$\begin{align}
\frac{1 + 2{\rm i}}{1 - 2{\rm i}} &= \frac{(1 + 2{\rm i})(1 + 2{\rm i})}{1^2 + 2^2} = \frac{1+8{\rm i} -4}{5}\\
&= -\frac{3}{5} + {\rm i} \frac{8}{5}
\end{align}$$
!!! check Example:
$$\begin{align}
\frac{1 + 2{\rm i}}{1 - 2{\rm i}} &= \frac{(1 + 2{\rm i})(1 + 2{\rm i})}{1^2 + 2^2} = \frac{1+8{\rm i} -4}{5}\\
& = -\frac{3}{5} + {\rm i} \frac{8}{5}
\end{align}$$
### Visualization: the complex plane
......@@ -185,13 +185,13 @@ We see that during multiplication, the norm of the new number is the *product* o
![image](figures/complex_numbers_12_0.svg)
**Example** Find all solutions solving $z^4 = 1$.
!!! check Example: Find all solutions solving $z^4 = 1$.
Of course, we know that $z = \pm 1$ are two solutions, but which other solutions are possible? We take a systematic approach:
$$\begin{align} z = e^{{\rm i} \varphi} & \Rightarrow z^4 = e^{4{\rm i} \varphi} = 1 \\
& \Leftrightarrow 4 \varphi = n 2 \pi \\
& \Leftrightarrow \varphi = 0, \varphi = \frac{\pi}{2}, \varphi = -\frac{\pi}{2}, \varphi = \pi \\
& \Leftrightarrow z = 1, z = i, z = -i, z = -1 \end{align}$$
Of course, we know that $z = \pm 1$ are two solutions, but which other solutions are possible? We take a systematic approach:
$$\begin{align} z = e^{{\rm i} \varphi} & \Rightarrow z^4 = e^{4{\rm i} \varphi} = 1 \\
& \Leftrightarrow 4 \varphi = n 2 \pi \\
& \Leftrightarrow \varphi = 0, \varphi = \frac{\pi}{2}, \varphi = -\frac{\pi}{2}, \varphi = \pi \\
& \Leftrightarrow z = 1, z = i, z = -i, z = -1 \end{align}$$
## Differentiation and integration
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment