Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Mathematics for Quantum Physics
lectures
Commits
7775aee0
Commit
7775aee0
authored
4 years ago
by
Michael Wimmer
Browse files
Options
Downloads
Patches
Plain Diff
use example environment
parent
9f7f7938
Branches
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#42641
passed
4 years ago
Stage: build
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/1_complex_numbers.md
+11
-11
11 additions, 11 deletions
src/1_complex_numbers.md
with
11 additions
and
11 deletions
src/1_complex_numbers.md
+
11
−
11
View file @
7775aee0
...
...
@@ -69,11 +69,11 @@ complex conjugate of $z_2$:
$$
\f
rac{z_1}{z_2} =
\f
rac{z_1 z_2^
*}{z_2 z_2^*
} =
\f
rac{(a_1 a_2 + b_1 b_2) + (-a_1 b_2 + a_2 b_1) {{
\r
m i}}}{a_2^2 + b_2^2}.$$
Check this!
**
Example
**
$$
\b
egin{align}
\f
rac{1 + 2{
\r
m i}}{1 - 2{
\r
m i}} &=
\f
rac{(1 + 2{
\r
m i})(1 + 2{
\r
m i})}{1^2 + 2^2} =
\f
rac{1+8{
\r
m i} -4}{5}
\\
&
= -
\f
rac{3}{5} + {
\r
m i}
\f
rac{8}{5}
\e
nd{align}$$
!!! check
Example
:
$$
\b
egin{align}
\f
rac{1 + 2{
\r
m i}}{1 - 2{
\r
m i}} &=
\f
rac{(1 + 2{
\r
m i})(1 + 2{
\r
m i})}{1^2 + 2^2} =
\f
rac{1+8{
\r
m i} -4}{5}
\\
&
= -
\f
rac{3}{5} + {
\r
m i}
\f
rac{8}{5}
\e
nd{align}$$
### Visualization: the complex plane
...
...
@@ -185,13 +185,13 @@ We see that during multiplication, the norm of the new number is the *product* o

**
Example
**
Find all solutions solving $z^4 = 1$.
!!! check
Example
:
Find all solutions solving $z^4 = 1$.
Of course, we know that $z =
\p
m 1$ are two solutions, but which other solutions are possible? We take a systematic approach:
$$
\b
egin{align} z = e^{{
\r
m i}
\v
arphi} &
\R
ightarrow z^4 = e^{4{
\r
m i}
\v
arphi} = 1
\\
&
\L
eftrightarrow 4
\v
arphi = n 2
\p
i
\\
&
\L
eftrightarrow
\v
arphi = 0,
\v
arphi =
\f
rac{
\p
i}{2},
\v
arphi = -
\f
rac{
\p
i}{2},
\v
arphi =
\p
i
\\
&
\L
eftrightarrow z = 1, z = i, z = -i, z = -1
\e
nd{align}$$
Of course, we know that $z = \pm 1$ are two solutions, but which other solutions are possible? We take a systematic approach:
$$\begin{align} z = e^{{\rm i} \varphi} & \Rightarrow z^4 = e^{4{\rm i} \varphi} = 1 \\
& \Leftrightarrow 4 \varphi = n 2 \pi \\
& \Leftrightarrow \varphi = 0, \varphi = \frac{\pi}{2}, \varphi = -\frac{\pi}{2}, \varphi = \pi \\
& \Leftrightarrow z = 1, z = i, z = -i, z = -1 \end{align}$$
## Differentiation and integration
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment