Skip to content
Snippets Groups Projects
Commit b48d87b9 authored by Michael Wimmer's avatar Michael Wimmer
Browse files

fix math errors

parent df9a499a
No related branches found
No related tags found
No related merge requests found
Pipeline #82995 passed
......@@ -536,13 +536,13 @@ necessary to work with numerical methods of solution.
1. [:grinning:] Which of the following equations for $y(x)$ is linear?
(a) y''' - y'' + x \cos(x) y' + y - 1 = 0
(a) $y''' - y'' + x \cos(x) y' + y - 1 = 0$
(b) y''' + 4 x y' - \cos(x) y = 0
(b) $y''' + 4 x y' - \cos(x) y = 0$
(c) y'' + y y' = 0
(c) $y'' + y y' = 0$
(d) y'' + e^x y' - x y = 0
(d) $y'' + e^x y' - x y = 0$
2. [:grinning:] Find the general solution to the equation
......@@ -576,9 +576,9 @@ necessary to work with numerical methods of solution.
5. [:smirk:] Consider the following partial differential equations, and try to make a separation ansatz $h(x,y)=f(x)g(y)$. What do you observe in each case? (Only attempt the separation, do not solve the problem fully)
(a) $$\frac{\partial h(x,y)}{\partial x} + x \frac{\partial h(x,y)}{\partial y} = 0. $$
(a) $\frac{\partial h(x,y)}{\partial x} + x \frac{\partial h(x,y)}{\partial y} = 0. $
(b) $$\frac{\partial h(x,y)}{\partial x} + \frac{\partial h(x,y)}{\partial y} + xy\,h(x,y) = 0$$
(b) $\frac{\partial h(x,y)}{\partial x} + \frac{\partial h(x,y)}{\partial y} + xy\,h(x,y) = 0$
6. [:sweat:] We consider the Hilbert space of functions $f(x)$ defined
for $x \ \epsilon \ [0,L]$ with $f(0)=f(L)=0$.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment