Skip to content
Snippets Groups Projects
Commit df33d269 authored by Michael Wimmer's avatar Michael Wimmer
Browse files

remove explicit conversion to linear system

parent 7229c429
No related branches found
No related tags found
1 merge request!9DifferentialEquationsLecture2
Pipeline #43655 passed
......@@ -153,29 +153,6 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb
$$y'' + Ey = 0.$$
Let us reduce this second order equation to a system of two first order
equations. Define
$$y_1=y$$
$$y_2=y'.$$
Writing $**y**= \begin{bmatrix}
y_1 \\
y_2 \\
\end{bmatrix}$, the DE can be written,
$$\dot{**y**} = \begin{bmatrix}
y_2 \\
-E y_1 \\
\end{bmatrix}$$
$$\dot{**y**} = \begin{bmatrix}
0 & 1 \\
-E & 0 \\
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2 \\
\end{bmatrix}.$$
The characteristic polynomial of this equation is
$$P(\lambda) = \lambda^2 + E.$$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment