Skip to content
Snippets Groups Projects
Commit eb04d2a2 authored by Michael Wimmer's avatar Michael Wimmer
Browse files

Add overview to complex

parent b328d71c
No related branches found
No related tags found
No related merge requests found
Pipeline #42345 passed
......@@ -4,7 +4,11 @@ title: Complex Numbers
# Complex numbers
The lecture on complex numbers consists of three parts, each with their own video and text.
The lecture on complex numbers consists of three parts, each with their own video:
- [Definition and basic operations](#definition-and-basic-operations)
- [Complex functions](#complex-functions)
- [Differentiation and integration](#differentiation-and-integration)
**Total video length: 38 minutes and 53 seconds**
......@@ -189,7 +193,7 @@ $$\begin{align} z = e^{{\rm i} \varphi} & \Rightarrow z^4 = e^{4{\rm i} \varphi}
& \Leftrightarrow \varphi = 0, \varphi = \frac{\pi}{2}, \varphi = -\frac{\pi}{2}, \varphi = \pi \\
& \Leftrightarrow z = 1, z = i, z = -i, z = -1 \end{align}$$
### Differentiation and integration
## Differentiation and integration
<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/JyftSqmmVdU" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
......@@ -198,6 +202,8 @@ We only consider differentiation and integration over *real* variables. We can t
$$\frac{d}{d\varphi} e^{{\rm i} \varphi} = e^{{\rm i} \varphi} \frac{d}{d\varphi} ({\rm i} \varphi) ={\rm i} e^{{\rm i} \varphi} .$$
$$\int_{0}^{\pi} e^{{\rm i} \varphi} = \frac{1}{{\rm i}} \left[ e^{{\rm i} \varphi} \right]_{0}^{\pi} = -{\rm i}(-1 -1) = 2 {\rm i}$$
## Bonus: the complex exponential function and trigonometry
Let us show some tricks where the simple properties of the exponential
function helps in re-deriving trigonometric identities.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment