Update differential equations
Compare changes
Files
2+ 43
− 22
@@ -2,7 +2,21 @@
@@ -80,7 +94,7 @@ $$\dot{\vec{x}(t)} = \vec{f}(\vec{x}(t),t) $$
@@ -237,7 +251,10 @@ we will develop the general theory for linear equations which will allow us to
@@ -269,9 +286,10 @@ a system of first order linear DE's
@@ -309,11 +327,11 @@ $c_1, c_2, \cdots c_n$ are constants.
@@ -400,7 +418,9 @@ $$\vec{\psi}(t)= \vec{\Phi}(t) \cdot \int \vec{\Phi}^{-1}(t) \vec{b}(t) dt .$$
@@ -467,7 +487,7 @@ solution are:
@@ -511,7 +531,7 @@ solutions $\vec{\phi}_{i}(t)$,
@@ -531,7 +551,7 @@ form a basis for the solution space since $det(\vec{v}_1 | \cdots | \vec{v}_n) \
@@ -603,13 +623,13 @@ form a basis for the solution space since $det(\vec{v}_1 | \cdots | \vec{v}_n) \
@@ -623,7 +643,7 @@ has a root $\lambda$ with multiplictiy 2, but only one eigenvector $\vec{v}_1$.
@@ -735,7 +755,8 @@ $$\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2(t e^{\lambda_1 t} \vec{v}_1
@@ -775,7 +796,7 @@ since we have demonstrated that $\vec{\phi}_{k}(t)$ is a solution of the DE.
@@ -787,15 +808,15 @@ since we have demonstrated that $\vec{\phi}_{k}(t)$ is a solution of the DE.
@@ -804,7 +825,7 @@ since we have demonstrated that $\vec{\phi}_{k}(t)$ is a solution of the DE.