Skip to content
Snippets Groups Projects

First major update of src/2_coordinates.md

Merged Maciej Topyla requested to merge maciejedits into master
1 file
+ 3
2
Compare changes
  • Side-by-side
  • Inline
+ 3
2
@@ -426,9 +426,10 @@ We have discussed four different coordinate systems:
In a similar fashion it can be shown that for spherical coordinates,
the Laplace operator acting on a function $\psi({\bf r})$ becomes:
\begin{align} \nabla^2 \psi (r,\vartheta,\varphi) &=
$$\begin{align} \nabla^2 \psi (r,\vartheta,\varphi) &=
\frac{1}{r^2} \frac{\partial}{\partial r^2} \left( r^2 \frac{\partial \psi(r,\vartheta,\varphi)}{\partial r} \right) \\ &+ \frac{1}{r^2\sin^2\vartheta} \frac{\partial^2 \psi(r,\vartheta, \varphi)}{\partial \varphi^2} \\ &+ \frac{1}{r^2\sin\vartheta}
\frac{\partial}{\partial \vartheta}\left( \sin\vartheta \frac{\partial\psi(r,\vartheta, \varphi)}{\partial \vartheta}\right).\end{align}
\frac{\partial}{\partial \vartheta}\left( \sin\vartheta \frac{\partial\psi(r,\vartheta, \varphi)}{\partial \vartheta}\right).
\end{align}$$
This is however even more tedious (you do not have to show this).
6. [:grinning:] *Integration and coordinates I*
Loading