1st major update to lecture note 4
Compare changes
Files
2+ 146
− 135
@@ -2,162 +2,170 @@
The set of all possible state vectors describing a given physical system forms a complex vector space $\mathcal{H}$, which is known as the *Hilbert space* of the system. You can think of the Hilbert space as the space populated by all possible states that a quantum system can be found on. Hilbert spaces inherit a number of the important properties of general vector spaces:
A linear combination (or superposition) of two or more state vectors $|{\psi_1}\rangle, |{\psi_2}\rangle, |{\psi_3}\rangle,... |{\psi_n}\rangle$, is also a state of the quantum system. Therefore, a linear combination $|{\Psi}\rangle$ of the form $$|{\Psi}\rangle=c_1|{\psi_1}\rangle+c_2|{\psi_1}\rangle+c_3|{\psi_3}\rangle+...+c_n|{\psi_n}\rangle = \sum_{i=1}^n c_i|{\psi_i}\rangle$$
- If a physical state of the system is given by a vector $|{\Psi}\rangle$, then the same physical state can also be represented by the vector $c|{\Psi}\rangle$ where $c$ is a non-zero complex number. The reason for this is that the overall normalisation of the state vector *does not change the physics* of the system (or in other words, does not modify the *information content* of the state vector). As we will discuss below, in quantum mechanics it is advantageous to work with *normalised vectors*, that is, whose *length* is one.
If a physical state of the system is given by a vector $|{\Psi}\rangle$, then the same physical state can also be represented by the vector $c|{\Psi}\rangle$ where $c$ is a non-zero complex number. The reason for this is that the overall normalisation of the state vector *does not change the physics* of the system (or in other words, does not modify the *information content* of the state vector). As we will discuss below, in quantum mechanics it is advantageous to work with *normalised vectors*, that is, whose *length* is one.
- A set of vectors \{$|{\psi_i}\rangle$\} is said to form a basis for the state space if the set of vectors is *complete* and if in addition they are *linearly independent*. The latter condition means essentially that one cannot express a given basis vector as a linear combination of the rest of basis vectors.
A set of vectors \{$|{\psi_i}\rangle$\} is said to form a basis for the state space if the set of vectors is *complete* and if in addition they are *linearly independent*. The latter condition means essentially that one cannot express a given basis vector as a linear combination of the rest of basis vectors.
- The minimum number of vectors needed to form a complete set of basis states is known as the *dimensionality* of the state space. In quantum mechanis you will encounter systems whose Hilbert spaces have very different dimensionality, from the spin-1/2 particle (a $n=2$ vector space) to the free particle (whose state vectors live in an infinite vector space).
The minimum number of vectors needed to form a complete set of basis states is known as the *dimensionality* of the state space. In quantum mechanics you will encounter systems whose Hilbert spaces have very different dimensionality, from the spin-1/2 particle (a $n=2$ vector space) to the free particle (whose state vectors live in an infinite vector space).
We need now to extend the Dirac notation to describe other elements of this vector space. We need to introduce a quantity $\langle{\Psi}|$, known as a *bra vector*, which represents the *complex conjugates* of the corresponding ket vector. Bra vectors are elements of the vector space $\mathcal{H}^{*}$, called the *dual space* of the original Hilbert space $\mathcal{H}$.
The value of the inner product $\langle{\psi}|{\phi}\rangle$ indicates the *probability amplitude* (not the probability) of measuring a system characterised by the state $|{\phi}\rangle$ to be in the state $|{\psi}\rangle$. This inner product can also be understood as measuring the *overlap* between the state vectors $|{\psi}\rangle$ and $|{\phi}\rangle$. Then the *probability* of observing the system to be in the state $|\psi\rangle$ given that it is in the state $|\phi\rangle$ will be given by $|\langle \psi | \phi \rangle|^2$. Since the latter quantity is a probability, we know that it should satisfy the condition that $0 \le |\langle \psi | \phi \rangle|^2 \le 1$.
- *Orthogonality*: two states $|\psi \rangle$ and $|\phi \rangle$ are said to be *orthogonal* if $\langle \psi | \phi\rangle=0$. By analogy with regular vector spaces, we can think of these two state vectors $|\psi \rangle$ and $|\phi \rangle$ as being *perpendicular* to each other. Note that for a quantum system occupying a certain state, there is a vanishing probability of it being observed in a state orthogonal to it.
You can see from the properties of complex algebra that this length must be a real number. A physically valid state $|\psi \rangle$ must be normalized to unity, that is $\langle \psi | \psi \rangle=1$. Note that a state that cannot be normalized to unity does not represent a physically acceptable state.
From all the above conditions we see that a Hilbert space is a so-called *complex inner product space*, which is nothing but a complex vector space equipped with a inner product. All the vectors belonging to a Hilbert space $\mathcal{H}$ have a finite norm, that is they can be normalized to unity. This normalisation condition is essential is we are to apply the probabilistic interpretation of the state vectors described above.
From all the above conditions, we see that a Hilbert space is a so-called *complex inner product space*, which is nothing else but a complex vector space equipped with a inner product. All the vectors belonging to a Hilbert space $\mathcal{H}$ have a finite norm, which means that they can be normalized to unity. This normalisation condition is essential is we are to apply the probabilistic interpretation of the state vectors described above.
By analogy with the Euclidean case, we can understand the coefficients $\psi_i$ as the *components* of the state vector $ |\psi\rangle$ along the $n$ directions spanned by the basis vectors. Here, note also that in this notation $\psi_i$ is an *scalar* (just a number) and not a vector. Furthermore, note that, as opposed to the Euclidean space, the coefficients $\psi_i$ will generally be complex numbers.
As a practical example to illustrate the basic ideas of vector spaces applied to quantum physics presented above, we will consider a quantum system which is fundamental for quantum mechanics and its applications. This system corresponds to the possible states that the intrinsic angular momentum of an electron, known as *spin*, can occupy. As you will see in following courses, the Hilbert space for the electron spin has dimension $n=2$, meaning that we can found an electron *pointing* either in the up direction, denoted by $|+\rangle$, or the down direction, denoted by $|-\rangle$.
@@ -196,11 +204,13 @@ $$
@@ -211,29 +221,30 @@ $$|{\Psi}\rangle= \left( \begin{array}{c}2 \\ 5 \end{array} \right) \, , \qquad