Addressing #16
Compare changes
+ 155
− 131
@@ -2,75 +2,89 @@
The key feature of such equations is that applying a matrix $A$ to the vector $\vec{v}$ returns *the original vector* up to an overall rescaling, $\lambda \vec{v}$. In general there will be multiple solutions to the eigenvalue equation $A \vec{v} =\lambda \vec{v}$, each one characterised by an specific eigenvalue and eigenvectors. Note that in some cases one has *degenerate solutions*, whereby a given matrix has two or more eigenvectors that are equal.
@@ -90,49 +104,60 @@ $$
@@ -147,27 +172,29 @@ $$
\begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix}= \lambda_{\psi_k}\begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix} \, , \quad k=1,\ldots,n \, .
\begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix}= \lambda_{\psi_k}\begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix} \, .
@@ -177,69 +204,66 @@ $$