Some formatting updates
Compare changes
Files
2+ 118
− 89
@@ -44,24 +44,25 @@ initial conditions,
@@ -82,7 +83,7 @@ In this course, we will be focusing on *Linear Differential Equations*, meaning
@@ -96,11 +97,17 @@ x_{m}(t) \\
@@ -112,7 +119,22 @@ to this type of equation are
@@ -120,16 +142,19 @@ $$x(t) = F(t) + c. $$
@@ -137,7 +162,7 @@ From this, we notice that if we can solve for $x(t)$, then we have the
@@ -151,20 +176,24 @@ possible to solve either implicitly or explicitly for the function $x(t)$.
@@ -186,7 +215,7 @@ $$\Rightarrow F(x(t)) = G(t) + c $$
@@ -367,43 +396,42 @@ $$ \dot{\vec{x}}(t) = A(t) \vec{x}(t) + \vec{b}(t).$$
@@ -493,39 +521,41 @@ $$A \vec{v}_i = \lambda_i \vec{v}_i, \qquad \forall i \epsilon \{1, \cdots, n \}
@@ -671,35 +701,33 @@ has a root $\lambda$ with multiplicity 2, but only one eigenvector $\vec{v}_1$.
What is the problem in this case? Since there are $n$ equations to be solved and an $n \times n$ linear operator $A$, the solution space for the equation requires a basis of $n$ solutions. In this case however, there are $n-1$ eigenvectors, so we cannot use only these eigenvectors in forming a basis for
@@ -766,14 +794,15 @@ Then, for comparison, multiply $\vec{\phi}_k(t)$ by $A$