Skip to content
Snippets Groups Projects

DifferentialEquationsLecture2

Merged Scarlett Gauthier requested to merge DE2 into master
1 file
+ 0
23
Compare changes
  • Side-by-side
  • Inline
@@ -153,29 +153,6 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb
$$y'' + Ey = 0.$$
Let us reduce this second order equation to a system of two first order
equations. Define
$$y_1=y$$
$$y_2=y'.$$
Writing $**y**= \begin{bmatrix}
y_1 \\
y_2 \\
\end{bmatrix}$, the DE can be written,
$$\dot{**y**} = \begin{bmatrix}
y_2 \\
-E y_1 \\
\end{bmatrix}$$
$$\dot{**y**} = \begin{bmatrix}
0 & 1 \\
-E & 0 \\
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2 \\
\end{bmatrix}.$$
The characteristic polynomial of this equation is
$$P(\lambda) = \lambda^2 + E.$$
Loading