Skip to content
Snippets Groups Projects
Commit 3a838318 authored by Anton Akhmerov's avatar Anton Akhmerov Committed by Christoph Groth
Browse files

add automatic calculation of n-th nearest neighbors

parent 01a617a9
Branches
Tags
No related merge requests found
......@@ -10,7 +10,7 @@
def make_system(a=1, t=1.0, W=10, r1=10, r2=20):
@@ -37,12 +38,13 @@
sys[lat.shape(ring, (0, r1 + 1))] = 4 * t
sys[lat.nearest] = -t
sys[lat.neighbors()] = -t
- # In order to introduce a flux through the ring, we introduce a phase on
- # the hoppings on the line cut through one of the arms. Since we want to
......@@ -40,14 +40,14 @@
+ rsq = x**2 + y**2
+ return ( r1**2 < rsq < r2**2)
+ sys[lat.shape(ring, (0, 11))] = 4 * t
+ sys[lat.nearest] = -t
+ sys[lat.neighbors()] = -t
+ sym_lead0 = kwant.TranslationalSymmetry((-a, 0))
+ lead0 = kwant.Builder(sym_lead0)
+ def lead_shape(pos):
+ (x, y) = pos
+ return (-1 < x < 1) and ( 0.5 * W < y < 1.5 * W )
+ lead0[lat.shape(lead_shape, (0, W))] = 4 * t
+ lead0[lat.nearest] = -t
+ lead0[lat.neighbors()] = -t
+ lead1 = lead0.reversed()
+ sys.attach_lead(lead0)
+ sys.attach_lead(lead1)
......@@ -62,14 +62,14 @@
+ rsq = x**2 + y**2
+ return ( r1**2 < rsq < r2**2)
+ sys[lat.shape(ring, (0, 11))] = 4 * t
+ sys[lat.nearest] = -t
+ sys[lat.neighbors()] = -t
+ sym_lead0 = kwant.TranslationalSymmetry((-a, 0))
+ lead0 = kwant.Builder(sym_lead0)
+ def lead_shape(pos):
+ (x, y) = pos
+ return (-1 < x < 1) and ( -W/2 < y < W/2 )
+ lead0[lat.shape(lead_shape, (0, 0))] = 4 * t
+ lead0[lat.nearest] = -t
+ lead0[lat.neighbors()] = -t
+ lead1 = lead0.reversed()
+ sys.attach_lead(lead0)
+ sys.attach_lead(lead1, lat(0, 0))
......
......@@ -8,7 +8,7 @@
# Define the graphene lattice
@@ -102,22 +103,40 @@
@@ -100,22 +101,40 @@
smatrix = kwant.solve(sys, energy)
data.append(smatrix.transmission(0, 1))
......@@ -57,7 +57,7 @@
def main():
@@ -130,17 +149,22 @@
@@ -128,17 +147,22 @@
return 0 if site.family == a else 1
# Plot the closed system without leads.
......
......@@ -38,7 +38,7 @@ def make_system(a=1, t=1.0, W=10, r1=10, r2=20):
# and add the corresponding lattice points using the `shape`-function
#HIDDEN_BEGIN_lcak
sys[lat.shape(ring, (0, r1 + 1))] = 4 * t
sys[lat.nearest] = -t
sys[lat.neighbors()] = -t
#HIDDEN_END_lcak
# In order to introduce a flux through the ring, we introduce a phase on
......@@ -76,7 +76,7 @@ def make_system(a=1, t=1.0, W=10, r1=10, r2=20):
return (-W / 2 < y < W / 2)
lead[lat.shape(lead_shape, (0, 0))] = 4 * t
lead[lat.nearest] = -t
lead[lat.neighbors()] = -t
#HIDDEN_END_qwgr
#### Attach the leads and return the system. ####
......
......@@ -35,13 +35,13 @@ def make_system(a=1, t=1.0, W=10, L=30, L_well=10):
return 4 * t + potential(site, pot)
sys[(lat(x, y) for x in range(L) for y in range(W))] = onsite
sys[lat.nearest] = -t
sys[lat.neighbors()] = -t
#HIDDEN_END_coid
#### Define and attach the leads. ####
lead = kwant.Builder(kwant.TranslationalSymmetry((-a, 0)))
lead[(lat(0, j) for j in xrange(W))] = 4 * t
lead[lat.nearest] = -t
lead[lat.neighbors()] = -t
sys.attach_lead(lead)
sys.attach_lead(lead.reversed())
......
......@@ -29,7 +29,7 @@ def make_system(a=1, t=1.0, W=10, L=30):
sys[(lat(x, y) for x in range(L) for y in range(W))] = 4 * t
#HIDDEN_END_vvjt
#HIDDEN_BEGIN_nooi
sys[lat.nearest] = -t
sys[lat.neighbors()] = -t
#HIDDEN_END_nooi
#### Define and attach the leads. ####
......@@ -37,7 +37,7 @@ def make_system(a=1, t=1.0, W=10, L=30):
#HIDDEN_BEGIN_iepx
lead = kwant.Builder(kwant.TranslationalSymmetry((-a, 0)))
lead[(lat(0, j) for j in xrange(W))] = 4 * t
lead[lat.nearest] = -t
lead[lat.neighbors()] = -t
#HIDDEN_END_iepx
# Attach the left lead and its reversed copy.
......
......@@ -36,8 +36,8 @@ def make_system(a=1, W=10, L=10, barrier=1.5, barrierpos=(3, 4),
for y in range(W))] = mu - 4 * t - barrier
# hoppings for both electrons and holes
sys[lat_e.nearest] = -t
sys[lat_h.nearest] = t
sys[lat_e.neighbors()] = -t
sys[lat_h.neighbors()] = t
# Superconducting order parameter enters as hopping between
# electrons and holes
......@@ -53,12 +53,12 @@ def make_system(a=1, W=10, L=10, barrier=1.5, barrierpos=(3, 4),
# left electron lead
lead0 = kwant.Builder(sym_left)
lead0[(lat_e(0, j) for j in xrange(W))] = 4 * t - mu
lead0[lat_e.nearest] = -t
lead0[lat_e.neighbors()] = -t
# left hole lead
lead1 = kwant.Builder(sym_left)
lead1[(lat_h(0, j) for j in xrange(W))] = mu - 4 * t
lead1[lat_h.nearest] = t
lead1[lat_h.neighbors()] = t
#HIDDEN_END_ttth
# Then the lead to the right
......
......@@ -308,16 +308,16 @@ feature of kwant:
In regular lattices, hoppings form large groups such that hoppings within a
group can be transformed into one another by lattice translations. In order to
allow to easily manipulate such hoppings, an object
`~kwant.builder.HoppingKind` is provided. When given a `~kwant.builder.Builder` as
an argument, `~kwant.builder.HoppingKind` yields all the hoppings of a
`~kwant.builder.HoppingKind` is provided. When given a `~kwant.builder.Builder`
as an argument, `~kwant.builder.HoppingKind` yields all the hoppings of a
certain kind that can be added to this builder without adding new sites. When
`~kwant.builder.HoppingKind` is given to `~kwant.builder.Builder` as a key, it
means that something is done to all the possible hoppings of this kind. A list
of `~kwant.builder.HoppingKind` objects corresponding to nearest neighbors in
pre-defined lattices in kwant (that is `~kwant.lattice.chain`,
`~kwant.lattice.square`, and `~kwant.lattice.honeycomb`) is stored in
``lat.nearest``. ``sys[lat.nearest] = -t`` then sets all of those hopping
matrix elements at once. More detailed example of using
lattices in kwant is obtained using ``lat.neighbors()``. ``sys[lat.neighbors()]
= -t`` then sets all of those hopping matrix elements at once. In order to set
values for all the nth-nearest neighbors at once, one can similarly use
``sys[lat.neighbors(n)] = -t``. More detailed example of using
`~kwant.builder.HoppingKind` directly will be provided in
:ref:`tutorial_spinorbit`.
......
......@@ -59,9 +59,9 @@ we can simply write:
Note that the Zeeman energy adds to the onsite term, whereas the Rashba
spin-orbit term adds to the hoppings (due to the derivative operator).
Furthermore, the hoppings in x and y-direction have a different matrix
structure. We now cannot use ``lat.nearest`` to add all the hoppings at once,
since we now have to distinguish x and y-direction. Because of that, we have to
explicitly specify the hoppings in the form expected by
structure. We now cannot use ``lat.neighbors()`` to add all the hoppings at
once, since we now have to distinguish x and y-direction. Because of that, we
have to explicitly specify the hoppings in the form expected by
`~kwant.builder.HoppingKind`:
- A tuple with relative lattice indices. For example, `(1, 0)` means
......@@ -248,7 +248,7 @@ provided by the lattice:
Here, ``lat.shape`` takes as a second parameter a (real-space) point that is
inside the desired shape. The hoppings can still be added using
``lat.nearest`` as before.
``lat.neighbors()`` as before.
Up to now, the system contains constant hoppings and onsite energies,
and we still need to include the phase shift due to the magnetic flux.
......
......@@ -14,7 +14,7 @@ obsolete. Where previously one would have had ::
now it suffices to write ::
sys[lat.nearest] = t
sys[lat.neighbors()] = t
This is possible because `~kwant.builder.Builder` now accepts *functions* as
keys in addition to `~kwant.builder.Site` objects and tuples of them
......@@ -125,9 +125,13 @@ Lattice and shape improvements
------------------------------
`~kwant.lattice.Monoatomic.closest` now returns an exact, and not approximately
closest point. A new method `~kwant.lattice.Monoatomic.n_closest` was added,
which returns n closest lattice points. Likewise
`~kwant.lattice.Polyatomic.shape` has acquired an improved flood-fill
which returns n closest lattice points.
Likewise `~kwant.lattice.Polyatomic.shape` has acquired an improved flood-fill
algorithm, making it work better on narrow ribbon (which were sometimes buggy
before with non-square lattices). Additionally, it was made symmetry-aware, so
if a shape is used for a lead, no conditions with regard to coordnate parallel
to the lead period are required.
Finally, lattices now have a method `~kwant.lattice.Polyatomic.neighbors`,
which calculates all the n-th shortest possible hoppings on this lattice.
......@@ -11,6 +11,7 @@ from __future__ import division
__all__ = ['TranslationalSymmetry', 'general', 'Polyatomic', 'Monatomic']
from math import sqrt
from itertools import product
import numpy as np
import tinyarray as ta
from . import builder
......@@ -104,6 +105,88 @@ class Polyatomic(object):
"""
return Shape(self, function, start)
def neighbors(self, n=1, eps=1e-8):
"""
Return n-th nearest neighbor hoppings.
Parameters
----------
n : integer
Order of the hoppings to return.
eps : float
A cutoff for when to consider lengths to be approximately equal.
Returns
-------
hoppings : list of kwant.builder.HopplingKind objects
A list n-th nearest neighbor hoppings.
Notes
-----
The hoppings are ordered lexicographically according to sublattice from
which they originate, sublattice on which they end, and their lattice
coordinates. Out of the two equivalent hoppings (a hopping and its
reverse) only the lexicographically larger one is returned.
"""
# This algorithm is not designed to be fast and can be improved,
# however there is no real need.
sls = self.sublattices
nvec = len(self.prim_vecs)
sublat_pairs = [(i, j) for (i, j) in product(sls, sls)
if sls.index(j) >= sls.index(i)]
def first_nonnegative(tag):
for i in tag:
if i < 0:
return False
elif i > 0:
return True
else:
continue
return True
# Find the correct number of neighbors to calculate on each lattice.
cutoff = n + 2
while True:
max_dist = []
sites = []
for i, j in sublat_pairs:
origin = j(*ta.zeros(nvec)).pos
tags = i.n_closest(origin, n=cutoff**nvec)
ij_dist = [np.linalg.norm(i(*tag).pos - origin)
for tag in tags]
sites.append((tags, (i, j), ij_dist))
max_dist = [i[2][-1] for i in sites]
distances = np.r_[tuple((i[2] for i in sites))]
distances = np.sort(distances)
group_boundaries = np.argwhere(np.diff(distances) > eps)
if len(group_boundaries) < n:
cutoff += 1
continue
n_dist = distances[group_boundaries[n]]
if np.all(max_dist > n_dist):
break
cutoff += 1
# We now have all the required sites, we need to find n-th.
result = []
for group in sites:
tags, distance = group[0], group[2]
i, j = group[1]
tags = np.array([tag for tag, dist in zip(tags, distance)
if abs(dist - n_dist) < eps])
if len(tags):
# Sort the tags.
tags = tags[np.lexsort(tags.T[::-1])][::-1]
# Throw away equivalent hoppings if
# two sublattices are the same.
if i == j and len(tags) > 1:
tags = tags[: len(tags) // 2]
for tag in tags:
result.append(builder.HoppingKind(tag, j, i))
return result
def vec(self, int_vec):
"""
Return the coordinates of a Bravais lattice vector in real space.
......@@ -489,15 +572,12 @@ class Shape(object):
def chain(a=1, name=''):
"""Create a one-dimensional lattice."""
lat = Monatomic(((a,),), name=name)
lat.nearest = [builder.HoppingKind((1,), lat, lat)]
return lat
def square(a=1, name=''):
"""Create a square lattice."""
lat = Monatomic(((a, 0), (0, a)), name=name)
lat.nearest = [builder.HoppingKind((1, 0), lat, lat),
builder.HoppingKind((0, 1), lat, lat)]
return lat
......@@ -506,7 +586,4 @@ def honeycomb(a=1, name=''):
lat = Polyatomic(((a, 0), (0.5 * a, 0.5 * a * sqrt(3))),
((0, 0), (0, a / sqrt(3))), name=name)
lat.a, lat.b = lat.sublattices
lat.nearest = [builder.HoppingKind((0, 0), lat.a, lat.b),
builder.HoppingKind((0, 1), lat.a, lat.b),
builder.HoppingKind((-1, 1), lat.a, lat.b)]
return lat
......@@ -382,7 +382,7 @@ def test_wavefunc_ldos_consistency(wave_function, ldos):
h = np.random.rand(n, n) + 1j * np.random.rand(n, n)
h += h.conjugate().transpose()
b[site] = h
for hopping_kind in square.nearest:
for hopping_kind in square.neighbors():
for hop in hopping_kind(b):
b[hop] = 10 * np.random.rand(n, n) + 1j * np.random.rand(n, n)
sys.attach_lead(left_lead)
......
......@@ -43,6 +43,15 @@ def test_general():
assert_raises(ValueError, lat, 0, 1)
def test_neighbors():
lat = lattice.honeycomb()
num_nth_nearest = [len(lat.neighbors(n)) for n in range(5)]
assert num_nth_nearest == [2, 3, 6, 3, 6]
lat = lattice.square()
num_nth_nearest = [len(lat.neighbors(n)) for n in range(5)]
assert num_nth_nearest == [1, 2, 2, 2, 4]
def test_shape():
def in_circle(pos):
return pos[0] ** 2 + pos[1] ** 2 < 3
......
......@@ -28,7 +28,7 @@ def sys_2d(W=3, r1=3, r2=8):
return r1 ** 2 < rsq < r2 ** 2
sys[lat.shape(ring, (0, r1 + 1))] = 4 * t
sys[lat.nearest] = -t
sys[lat.neighbors()] = -t
sym_lead0 = kwant.TranslationalSymmetry(lat.vec((-1, 0)))
lead0 = kwant.Builder(sym_lead0)
lead2 = kwant.Builder(sym_lead0)
......@@ -38,7 +38,7 @@ def sys_2d(W=3, r1=3, r2=8):
lead0[lat.shape(lead_shape, (0, 0))] = 4 * t
lead2[lat.shape(lead_shape, (0, 0))] = 4 * t
sys.attach_lead(lead2)
lead0[lat.nearest] = - t
lead0[lat.neighbors()] = - t
lead1 = lead0.reversed()
sys.attach_lead(lead0)
sys.attach_lead(lead1)
......@@ -47,8 +47,6 @@ def sys_2d(W=3, r1=3, r2=8):
def sys_3d(W=3, r1=2, r2=4, a=1, t=1.0):
lat = kwant.lattice.general(((a, 0, 0), (0, a, 0), (0, 0, a)))
lat.nearest = [kwant.builder.HoppingKind(*kind) for kind in
[((1, 0, 0), lat), ((0, 1, 0), lat), ((0, 0, 1), lat)]]
sys = kwant.Builder()
def ring(pos):
......@@ -56,14 +54,14 @@ def sys_3d(W=3, r1=2, r2=4, a=1, t=1.0):
rsq = x ** 2 + y ** 2
return (r1 ** 2 < rsq < r2 ** 2) and abs(z) < 2
sys[lat.shape(ring, (0, -r2 + 1, 0))] = 4 * t
sys[lat.nearest] = - t
sys[lat.neighbors()] = - t
sym_lead0 = kwant.TranslationalSymmetry(lat.vec((-1, 0, 0)))
lead0 = kwant.Builder(sym_lead0)
lead_shape = lambda pos: (-W / 2 < pos[1] < W / 2) and abs(pos[2]) < 2
lead0[lat.shape(lead_shape, (0, 0, 0))] = 4 * t
lead0[lat.nearest] = - t
lead0[lat.neighbors()] = - t
lead1 = lead0.reversed()
sys.attach_lead(lead0)
sys.attach_lead(lead1)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment