Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" a=10, r1=50, r2=70, coverage_angle=135, angle=45, with_shell=True, which_lead=\"\"\n",
")\n",
"\n",
"params = dict(\n",
" alpha=20,\n",
" B_x=0,\n",
" B_y=0,\n",
" B_z=0,\n",
" Delta=110,\n",
" g=50,\n",
" orbital=True,\n",
" mu_sc=100,\n",
" c_tunnel=3 / 4,\n",
" V_r=-50,\n",
" intrinsic_sc=False,\n",
" mu_=lambda x0, sigma, mu_lead, mu_wire: mu_lead,\n",
" V_=lambda z, V_0, V_r, V_l, x0, sigma, r1: 0,\n",
" V_0=None,\n",
" V_l=None,\n",
" mu_lead=10,\n",
" mu_wire=None,\n",
" r1=None,\n",
" sigma=None,\n",
" x0=None,\n",
"def pf(xy, params=params, lead_pars=lead_pars):\n",
" lead = phase_diagram.make_lead(**lead_pars).finalized()\n",
" return phase_diagram.calculate_pfaffian(lead, params)\n",
"def smallest_gap(xy, params=params, lead_pars=lead_pars):\n",
" lead = phase_diagram.make_lead(**lead_pars).finalized()\n",
" pf = phase_diagram.calculate_pfaffian(lead, params)\n",
" gap = phase_diagram.gap_from_modes(lead, params)\n",
" return pf * gap\n",
"\n",
"fname = 'phase_diagram_gap.pickle'\n",
"# fname = 'phase_diagram.pickle'\n",
"\n",
"loss = adaptive.learner.learnerND.curvature_loss_function()\n",
"learner = adaptive.LearnerND(smallest_gap, bounds=[(0, 2), (0, 35)], loss_per_simplex=loss)\n",
"\n",
"# learner.load(fname)\n",
"\n",
"learners = [learner]\n",
"fnames = [fname]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import adaptive\n",
"adaptive.notebook_extension()\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.npoints > 60000)\n",
"runner.live_info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%output size=100\n",
"learner.plot(tri_alpha=0.4, n=None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import adaptive_scheduler\n",
"\n",
"def goal(learner):\n",
"scheduler = adaptive_scheduler.scheduler.DefaultScheduler(\n",
" cores=100,\n",
" executor_type=\"ipyparallel\",\n",
") # PBS or SLURM\n",
"\n",
"run_manager = adaptive_scheduler.server_support.RunManager(\n",
" scheduler=scheduler,\n",
" learners_file=\"learners_file.py\",\n",
" goal=goal,\n",
" log_interval=30,\n",
" save_interval=30,\n",
" job_name='phase-diagram'\n",
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}