Skip to content
Snippets Groups Projects
pfaffian.py 14 KiB
Newer Older
Bas Nijholt's avatar
Bas Nijholt committed
"""A package for computing Pfaffians"""


Bas Nijholt's avatar
Bas Nijholt committed
import cmath
import math

Bas Nijholt's avatar
Bas Nijholt committed
import numpy as np
import scipy.linalg as la
import scipy.sparse as sp


def householder_real(x):
    """(v, tau, alpha) = householder_real(x)

    Compute a Householder transformation such that
    (1-tau v v^T) x = alpha e_1
    where x and v a real vectors, tau is 0 or 2, and
    alpha a real number (e_1 is the first unit vector)
    """

    assert x.shape[0] > 0

    sigma = x[1:] @ x[1:]

    if sigma == 0:
        return (np.zeros(x.shape[0]), 0, x[0])
    else:
Bas Nijholt's avatar
Bas Nijholt committed
        norm_x = math.sqrt(x[0] ** 2 + sigma)
Bas Nijholt's avatar
Bas Nijholt committed

        v = x.copy()

        # depending on whether x[0] is positive or negatvie
        # choose the sign
        if x[0] <= 0:
            v[0] -= norm_x
            alpha = +norm_x
        else:
            v[0] += norm_x
            alpha = -norm_x

        v /= np.linalg.norm(v)

        return (v, 2, alpha)


def householder_complex(x):
    """(v, tau, alpha) = householder_real(x)

    Compute a Householder transformation such that
    (1-tau v v^T) x = alpha e_1
    where x and v a complex vectors, tau is 0 or 2, and
    alpha a complex number (e_1 is the first unit vector)
    """
    assert x.shape[0] > 0

    sigma = np.conj(x[1:]) @ x[1:]

    if sigma == 0:
        return (np.zeros(x.shape[0]), 0, x[0])
    else:
Bas Nijholt's avatar
Bas Nijholt committed
        norm_x = cmath.sqrt(x[0].conjugate() * x[0] + sigma)
Bas Nijholt's avatar
Bas Nijholt committed

        v = x.copy()

Bas Nijholt's avatar
Bas Nijholt committed
        phase = cmath.exp(1j * math.atan2(x[0].imag, x[0].real))
Bas Nijholt's avatar
Bas Nijholt committed

Bas Nijholt's avatar
Bas Nijholt committed
        v[0] += phase * norm_x
Bas Nijholt's avatar
Bas Nijholt committed

        v /= np.linalg.norm(v)

Bas Nijholt's avatar
Bas Nijholt committed
    return (v, 2, -phase * norm_x)
Bas Nijholt's avatar
Bas Nijholt committed


def skew_tridiagonalize(A, overwrite_a=False, calc_q=True):
    """ T, Q = skew_tridiagonalize(A, overwrite_a, calc_q=True)

    or

    T = skew_tridiagonalize(A, overwrite_a, calc_q=False)

    Bring a real or complex skew-symmetric matrix (A=-A^T) into
    tridiagonal form T (with zero diagonal) with a orthogonal
    (real case) or unitary (complex case) matrix U such that
    A = Q T Q^T
    (Note that Q^T and *not* Q^dagger also in the complex case)

    A is overwritten if overwrite_a=True (default: False), and
    Q only calculated if calc_q=True (default: True)
    """

    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14
Bas Nijholt's avatar
Bas Nijholt committed

    n = A.shape[0]
    A = np.asarray(A)  # the slice views work only properly for arrays

    # Check if we have a complex data type
    if np.issubdtype(A.dtype, np.complexfloating):
        householder = householder_complex
    elif not np.issubdtype(A.dtype, np.number):
        raise TypeError("pfaffian() can only work on numeric input")
    else:
        householder = householder_real

    if not overwrite_a:
        A = A.copy()

    if calc_q:
        Q = np.eye(A.shape[0], dtype=A.dtype)

Bas Nijholt's avatar
Bas Nijholt committed
    for i in range(A.shape[0] - 2):
Bas Nijholt's avatar
Bas Nijholt committed
        # Find a Householder vector to eliminate the i-th column
Bas Nijholt's avatar
Bas Nijholt committed
        v, tau, alpha = householder(A[i + 1 :, i])
        A[i + 1, i] = alpha
        A[i, i + 1] = -alpha
        A[i + 2 :, i] = 0
        A[i, i + 2 :] = 0
Bas Nijholt's avatar
Bas Nijholt committed

        # Update the matrix block A(i+1:N,i+1:N)
Bas Nijholt's avatar
Bas Nijholt committed
        w = tau * A[i + 1 :, i + 1 :] @ v.conj()
        A[i + 1 :, i + 1 :] += np.outer(v, w) - np.outer(w, v)
Bas Nijholt's avatar
Bas Nijholt committed

        if calc_q:
            # Accumulate the individual Householder reflections
            # Accumulate them in the form P_1*P_2*..., which is
            # (..*P_2*P_1)^dagger
Bas Nijholt's avatar
Bas Nijholt committed
            y = tau * Q[:, i + 1 :] @ v
            Q[:, i + 1 :] -= np.outer(y, v.conj())
Bas Nijholt's avatar
Bas Nijholt committed

    if calc_q:
        return (np.asmatrix(A), np.asmatrix(Q))
    else:
        return np.asmatrix(A)


def skew_LTL(A, overwrite_a=False, calc_L=True, calc_P=True):
    """ T, L, P = skew_LTL(A, overwrite_a, calc_q=True)

    Bring a real or complex skew-symmetric matrix (A=-A^T) into
    tridiagonal form T (with zero diagonal) with a lower unit
    triangular matrix L such that
    P A P^T= L T L^T

    A is overwritten if overwrite_a=True (default: False),
    L and P only calculated if calc_L=True or calc_P=True,
    respectively (default: True).
    """

    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14
Bas Nijholt's avatar
Bas Nijholt committed

    n = A.shape[0]
    A = np.asarray(A)  # the slice views work only properly for arrays

    if not overwrite_a:
        A = A.copy()

    if calc_L:
        L = np.eye(n, dtype=A.dtype)

    if calc_P:
        Pv = np.arange(n)

Bas Nijholt's avatar
Bas Nijholt committed
    for k in range(n - 2):
Bas Nijholt's avatar
Bas Nijholt committed
        # First, find the largest entry in A[k+1:,k] and
        # permute it to A[k+1,k]
Bas Nijholt's avatar
Bas Nijholt committed
        kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
Bas Nijholt's avatar
Bas Nijholt committed

        # Check if we need to pivot
Bas Nijholt's avatar
Bas Nijholt committed
        if kp != k + 1:
Bas Nijholt's avatar
Bas Nijholt committed
            # interchange rows k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k + 1, k:].copy()
            A[k + 1, k:] = A[kp, k:]
Bas Nijholt's avatar
Bas Nijholt committed
            A[kp, k:] = temp

            # Then interchange columns k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k:, k + 1].copy()
            A[k:, k + 1] = A[k:, kp]
Bas Nijholt's avatar
Bas Nijholt committed
            A[k:, kp] = temp

            if calc_L:
                # permute L accordingly
Bas Nijholt's avatar
Bas Nijholt committed
                temp = L[k + 1, 1 : k + 1].copy()
                L[k + 1, 1 : k + 1] = L[kp, 1 : k + 1]
                L[kp, 1 : k + 1] = temp
Bas Nijholt's avatar
Bas Nijholt committed

            if calc_P:
                # accumulate the permutation matrix
Bas Nijholt's avatar
Bas Nijholt committed
                temp = Pv[k + 1]
                Pv[k + 1] = Pv[kp]
Bas Nijholt's avatar
Bas Nijholt committed
                Pv[kp] = temp

        # Now form the Gauss vector
Bas Nijholt's avatar
Bas Nijholt committed
        if A[k + 1, k] != 0.0:
            tau = A[k + 2 :, k].copy()
            tau /= A[k + 1, k]
Bas Nijholt's avatar
Bas Nijholt committed

            # clear eliminated row and column
Bas Nijholt's avatar
Bas Nijholt committed
            A[k + 2 :, k] = 0.0
            A[k, k + 2 :] = 0.0
Bas Nijholt's avatar
Bas Nijholt committed

            # Update the matrix block A(k+2:,k+2)
Bas Nijholt's avatar
Bas Nijholt committed
            A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
            A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
Bas Nijholt's avatar
Bas Nijholt committed

            if calc_L:
Bas Nijholt's avatar
Bas Nijholt committed
                L[k + 2 :, k + 1] = tau
Bas Nijholt's avatar
Bas Nijholt committed

    if calc_P:
        # form the permutation matrix as a sparse matrix
        P = sp.csr_matrix((np.ones(n), (np.arange(n), Pv)))

    if calc_L:
        if calc_P:
            return (np.asmatrix(A), np.asmatrix(L), P)
        else:
            return (np.asmatrix(A), np.asmatrix(L))
    else:
        if calc_P:
            return (np.asmatrix(A), P)
        else:
            return np.asmatrix(A)


Bas Nijholt's avatar
Bas Nijholt committed
def pfaffian(A, overwrite_a=False, method="P", sign_only=False):
Bas Nijholt's avatar
Bas Nijholt committed
    """ pfaffian(A, overwrite_a=False, method='P')

    Compute the Pfaffian of a real or complex skew-symmetric
    matrix A (A=-A^T). If overwrite_a=True, the matrix A
    is overwritten in the process. This function uses
    either the Parlett-Reid algorithm (method='P', default),
    or the Householder tridiagonalization (method='H')
    """
    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14, abs((A + A.T).max())
Bas Nijholt's avatar
Bas Nijholt committed
    # Check that the method variable is appropriately set
Bas Nijholt's avatar
Bas Nijholt committed
    assert method == "P" or method == "H"
    if method == "H" and sign_only:
Bas Nijholt's avatar
Bas Nijholt committed
        raise Exception("Use `method='P'` when using `sign_only=True`")
Bas Nijholt's avatar
Bas Nijholt committed
    if method == "P":
Bas Nijholt's avatar
Bas Nijholt committed
        return pfaffian_LTL(A, overwrite_a, sign_only)
    else:
        return pfaffian_householder(A, overwrite_a)


def pfaffian_LTL(A, overwrite_a=False, sign_only=False):
    """ pfaffian_LTL(A, overwrite_a=False)

    Compute the Pfaffian of a real or complex skew-symmetric
    matrix A (A=-A^T). If overwrite_a=True, the matrix A
    is overwritten in the process. This function uses
    the Parlett-Reid algorithm.
    """
    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14
Bas Nijholt's avatar
Bas Nijholt committed

    n = A.shape[0]
    A = np.asarray(A)  # the slice views work only properly for arrays

    # Quick return if possible
    if n % 2 == 1:
        return 0

    if not overwrite_a:
        A = A.copy()

    pfaffian_val = 1.0

Bas Nijholt's avatar
Bas Nijholt committed
    for k in range(0, n - 1, 2):
Bas Nijholt's avatar
Bas Nijholt committed
        # First, find the largest entry in A[k+1:,k] and
        # permute it to A[k+1,k]
Bas Nijholt's avatar
Bas Nijholt committed
        kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
Bas Nijholt's avatar
Bas Nijholt committed

        # Check if we need to pivot
Bas Nijholt's avatar
Bas Nijholt committed
        if kp != k + 1:
Bas Nijholt's avatar
Bas Nijholt committed
            # interchange rows k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k + 1, k:].copy()
            A[k + 1, k:] = A[kp, k:]
Bas Nijholt's avatar
Bas Nijholt committed
            A[kp, k:] = temp

            # Then interchange columns k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k:, k + 1].copy()
            A[k:, k + 1] = A[k:, kp]
Bas Nijholt's avatar
Bas Nijholt committed
            A[k:, kp] = temp

            # every interchange corresponds to a "-" in det(P)
            pfaffian_val *= -1

        # Now form the Gauss vector
Bas Nijholt's avatar
Bas Nijholt committed
        if A[k + 1, k] != 0.0:
            tau = A[k, k + 2 :].copy()
            tau /= A[k, k + 1]
Bas Nijholt's avatar
Bas Nijholt committed

            if sign_only:
Bas Nijholt's avatar
Bas Nijholt committed
                pfaffian_val *= np.sign(A[k, k + 1])
Bas Nijholt's avatar
Bas Nijholt committed
            else:
Bas Nijholt's avatar
Bas Nijholt committed
                pfaffian_val *= A[k, k + 1]
Bas Nijholt's avatar
Bas Nijholt committed

Bas Nijholt's avatar
Bas Nijholt committed
            if k + 2 < n:
Bas Nijholt's avatar
Bas Nijholt committed
                # Update the matrix block A(k+2:,k+2)
Bas Nijholt's avatar
Bas Nijholt committed
                A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
                A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
Bas Nijholt's avatar
Bas Nijholt committed
        else:
            # if we encounter a zero on the super/subdiagonal, the
            # Pfaffian is 0
            return 0.0

    return pfaffian_val


def pfaffian_householder(A, overwrite_a=False):
    """ pfaffian(A, overwrite_a=False)

    Compute the Pfaffian of a real or complex skew-symmetric
    matrix A (A=-A^T). If overwrite_a=True, the matrix A
    is overwritten in the process. This function uses the
    Householder tridiagonalization.

    Note that the function pfaffian_schur() can also be used in the
    real case. That function does not make use of the skew-symmetry
    and is only slightly slower than pfaffian_householder().
    """

    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14
Bas Nijholt's avatar
Bas Nijholt committed

    n = A.shape[0]

    # Quick return if possible
    if n % 2 == 1:
        return 0

    # Check if we have a complex data type
    if np.issubdtype(A.dtype, np.complexfloating):
        householder = householder_complex
    elif not np.issubdtype(A.dtype, np.number):
        raise TypeError("pfaffian() can only work on numeric input")
    else:
        householder = householder_real

    A = np.asarray(A)  # the slice views work only properly for arrays

    if not overwrite_a:
        A = A.copy()

Bas Nijholt's avatar
Bas Nijholt committed
    pfaffian_val = 1.0
Bas Nijholt's avatar
Bas Nijholt committed

Bas Nijholt's avatar
Bas Nijholt committed
    for i in range(A.shape[0] - 2):
Bas Nijholt's avatar
Bas Nijholt committed
        # Find a Householder vector to eliminate the i-th column
Bas Nijholt's avatar
Bas Nijholt committed
        v, tau, alpha = householder(A[i + 1 :, i])
        A[i + 1, i] = alpha
        A[i, i + 1] = -alpha
        A[i + 2 :, i] = 0
        A[i, i + 2 :] = 0
Bas Nijholt's avatar
Bas Nijholt committed

        # Update the matrix block A(i+1:N,i+1:N)
Bas Nijholt's avatar
Bas Nijholt committed
        w = tau * A[i + 1 :, i + 1 :] @ v.conj()
        A[i + 1 :, i + 1 :] += np.outer(v, w) - np.outer(w, v)
Bas Nijholt's avatar
Bas Nijholt committed

        if tau != 0:
Bas Nijholt's avatar
Bas Nijholt committed
            pfaffian_val *= 1 - tau
Bas Nijholt's avatar
Bas Nijholt committed
        if i % 2 == 0:
            pfaffian_val *= -alpha

Bas Nijholt's avatar
Bas Nijholt committed
    pfaffian_val *= A[n - 2, n - 1]
Bas Nijholt's avatar
Bas Nijholt committed

    return pfaffian_val


def pfaffian_schur(A, overwrite_a=False):
    """Calculate Pfaffian of a real antisymmetric matrix using
    the Schur decomposition. (Hessenberg would in principle be faster,
    but scipy-0.8 messed up the performance for scipy.linalg.hessenberg()).

    This function does not make use of the skew-symmetry of the matrix A,
    but uses a LAPACK routine that is coded in FORTRAN and hence faster
    than python. As a consequence, pfaffian_schur is only slightly slower
    than pfaffian().
    """

    assert np.issubdtype(A.dtype, np.number) and not np.issubdtype(
Bas Nijholt's avatar
Bas Nijholt committed
        A.dtype, np.complexfloating
    )
Bas Nijholt's avatar
Bas Nijholt committed

    assert A.shape[0] == A.shape[1] > 0

    assert abs(A + A.T).max() < 1e-14

    # Quick return if possible
    if A.shape[0] % 2 == 1:
        return 0

Bas Nijholt's avatar
Bas Nijholt committed
    (t, z) = la.schur(A, output="real", overwrite_a=overwrite_a)
Bas Nijholt's avatar
Bas Nijholt committed
    l = np.diag(t, 1)
    return np.prod(l[::2]) * la.det(z)


def pfaffian_sign(A, overwrite_a=False):
    """ pfaffian(A, overwrite_a=False, method='P')

    Compute the Pfaffian of a real or complex skew-symmetric
    matrix A (A=-A^T). If overwrite_a=True, the matrix A
    is overwritten in the process. This function uses
    either the Parlett-Reid algorithm (method='P', default),
    or the Householder tridiagonalization (method='H')
    """
    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14, abs((A + A.T).max())
Bas Nijholt's avatar
Bas Nijholt committed

    return pfaffian_LTL_sign(A, overwrite_a)


def pfaffian_LTL_sign(A, overwrite_a=False):
    """MODIFIED FROM pfaffian_LTL(A, overwrite_a=False)

    Compute the Pfaffian of a real or complex skew-symmetric
    matrix A (A=-A^T). If overwrite_a=True, the matrix A
    is overwritten in the process. This function uses
    the Parlett-Reid algorithm.
    """
    # Check if matrix is square
    assert A.shape[0] == A.shape[1] > 0
    # Check if it's skew-symmetric
Bas Nijholt's avatar
Bas Nijholt committed
    assert abs((A + A.T).max()) < 1e-14
Bas Nijholt's avatar
Bas Nijholt committed

    n = A.shape[0]
    A = np.asarray(A)  # the slice views work only properly for arrays

    # Quick return if possible
    if n % 2 == 1:
        return 0

    if not overwrite_a:
        A = A.copy()

    pfaffian_val = 1.0

Bas Nijholt's avatar
Bas Nijholt committed
    for k in range(0, n - 1, 2):
Bas Nijholt's avatar
Bas Nijholt committed
        # First, find the largest entry in A[k+1:,k] and
        # permute it to A[k+1,k]
Bas Nijholt's avatar
Bas Nijholt committed
        kp = k + 1 + np.abs(A[k + 1 :, k]).argmax()
Bas Nijholt's avatar
Bas Nijholt committed

        # Check if we need to pivot
Bas Nijholt's avatar
Bas Nijholt committed
        if kp != k + 1:
Bas Nijholt's avatar
Bas Nijholt committed
            # interchange rows k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k + 1, k:].copy()
            A[k + 1, k:] = A[kp, k:]
Bas Nijholt's avatar
Bas Nijholt committed
            A[kp, k:] = temp

            # Then interchange columns k+1 and kp
Bas Nijholt's avatar
Bas Nijholt committed
            temp = A[k:, k + 1].copy()
            A[k:, k + 1] = A[k:, kp]
Bas Nijholt's avatar
Bas Nijholt committed
            A[k:, kp] = temp

            # every interchange corresponds to a "-" in det(P)
            pfaffian_val *= -1

        # Now form the Gauss vector
Bas Nijholt's avatar
Bas Nijholt committed
        if A[k + 1, k] != 0.0:
            tau = A[k, k + 2 :].copy()
            tau /= A[k, k + 1]
Bas Nijholt's avatar
Bas Nijholt committed

Bas Nijholt's avatar
Bas Nijholt committed
            pfaffian_val *= A[k, k + 1]
Bas Nijholt's avatar
Bas Nijholt committed

Bas Nijholt's avatar
Bas Nijholt committed
            if k + 2 < n:
Bas Nijholt's avatar
Bas Nijholt committed
                # Update the matrix block A(k+2:,k+2)
Bas Nijholt's avatar
Bas Nijholt committed
                A[k + 2 :, k + 2 :] += np.outer(tau, A[k + 2 :, k + 1])
                A[k + 2 :, k + 2 :] -= np.outer(A[k + 2 :, k + 1], tau)
Bas Nijholt's avatar
Bas Nijholt committed
        else:
            # if we encounter a zero on the super/subdiagonal, the
            # Pfaffian is 0
            return 0.0

    return pfaffian_val