Skip to content
Snippets Groups Projects
Commit 0d7a9aa8 authored by Bas Nijholt's avatar Bas Nijholt
Browse files

use np instead of numpy

parent 3511b945
No related branches found
No related tags found
No related merge requests found
Pipeline #21720 passed
......@@ -294,7 +294,7 @@ To change the loss function for the `Learner1D` we pass a loss function, like
def distance_loss(xs, ys): # used by default
dx = xs[1] - xs[0]
dy = ys[1] - ys[0]
return numpy.hypot(dx, dy)
return np.hypot(dx, dy)
learner = Learner1D(peak, bounds=(-1, 1), loss_per_interval=distance_loss)
```
......@@ -314,7 +314,7 @@ from adaptive import LearnerND
def ring(xy): # pretend this is a slow function
x, y = xy
a = 0.2
return x + numpy.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)
return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)
learner = adaptive.LearnerND(ring, bounds=[(-1, 1), (-1, 1)])
runner = Runner(learner, goal)
......@@ -326,7 +326,7 @@ For example, the loss function used to find the iso-line in Fig. @fig:isoline (b
from adaptive.learner.learnerND import default_loss
def gaussian(x, mu, sigma):
return np.exp(-(x - mu) ** 2 / sigma ** 2 / 2)
return np.exp(-(x - mu)**2 / sigma**2 / 2)
def isoline_loss_function(level, sigma, priority):
def loss(simplex, values, value_scale):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment