Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Adaptive"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[`adaptive`](https://gitlab.kwant-project.org/qt/adaptive-evaluation) is a package for adaptively sampling functions with support for parallel evaluation.\n",
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"\n",
"This is an introductory notebook that shows some basic use cases.\n",
"\n",
"`adaptive` needs the following packages:\n",
"\n",
"+ Python 3.6\n",
"+ holowiews\n",
"+ bokeh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import adaptive\n",
"adaptive.notebook_extension()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1D function learner"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We start with the most common use-case: sampling a 1D function $\\ f: ℝ → ℝ$.\n",
"\n",
"We will use the following function, which is a smooth (linear) background with a sharp peak at a random location:"
]
},
{
"cell_type": "code",
"execution_count": null,
"offset = random() - 0.5\n",
"\n",
"def f(x, offset=0, wait=True):\n",
" sleep(random())\n",
" return x + a**2 / (a**2 + (x - offset)**2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We start by initializing a 1D \"learner\", which will suggest points to evaluate, and adapt its suggestions as more and more points are evaluated."
]
},
{
"cell_type": "code",
"execution_count": null,
"learner = adaptive.learner.Learner1D(f, bounds=(-1.0, 1.0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we create a \"runner\" that will request points from the learner and evaluate 'f' on them.\n",
"\n",
"By default the runner will evaluate the points in parallel using local processes ([`concurrent.futures.ProcessPoolExecutor`](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor))."
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# The end condition is when the \"loss\" is less than 0.1. In the context of the\n",
"# 1D learner this means that we will resolve features in 'func' with width 0.1 or wider.\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When instantiated in a Jupyter notebook the runner does its job in the background and does not block the IPython kernel.\n",
"We can use this to create a plot that updates as new data arrives:"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"adaptive.live_plot(runner)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now compare the adaptive sampling to a homogeneous sampling with the same number of points:"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"if not runner.task.done():\n",
" raise RuntimeError('Wait for the runner to finish before executing the cells below!')"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"learner2 = adaptive.learner.Learner1D(f, bounds=(-1.01, 1.0))\n",
"\n",
"xs = np.linspace(-1.0, 1.0, len(learner.data))\n",
"learner2.add_data(xs, map(partial(f, wait=False), xs))\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Averaging learner"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The next type of learner averages a function until the uncertainty in the average meets some condition.\n",
"\n",
"This is useful for sampling a random variable. The function passed to the learner must formally take a single parameter,\n",
"which should be used like a \"seed\" for the (pseudo-) random variable (although in the current implementation the seed parameter can be ignored by the function)."
]
},
{
"cell_type": "code",
"execution_count": null,
"def g(n):\n",
" import random\n",
" from time import sleep\n",
" sleep(random.random() / 5)\n",
" # Properly save and restore the RNG state\n",
" state = random.getstate()\n",
" random.seed(n)\n",
" val = random.gauss(0.5, 1)\n",
" random.setstate(state)\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": null,
"learner = adaptive.AverageLearner(g, None, 0.01)\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 1)\n",
"adaptive.live_plot(runner)"
]
},
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Balancing learner"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The balancing learner is a \"meta-learner\" that takes a list of multiple leaners. The runner wil find find out which points of which child learner will improve the loss the most and send those to the executor.\n",
"\n",
"The balancing learner can for example be used to implement a poor-man's 2D learner by using the `Learner1D`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from adaptive.learner import Learner1D, BalancingLearner\n",
"\n",
"learners = [Learner1D(partial(f, offset=2*random()-1, wait=False), bounds=(-1.0, 1.0)) for i in range(10)]\n",
"learner = BalancingLearner(learners)\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.02)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import holoviews as hv\n",
"adaptive.live_plot(runner, plotter=lambda learner: hv.Overlay([L.plot() for L in learner.learners]))"
]
},
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2D learner"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def func(arg):\n",
" import numpy as np\n",
" x, y = arg\n",
" a = 0.2\n",
" return np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)\n",
"\n",
"learner = adaptive.learner.AdaptiveTriSampling(func, bounds=[(-1, 1), (-1, 1)])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from concurrent.futures import ProcessPoolExecutor\n",
"executor = ProcessPoolExecutor(max_workers=2)\n",
"runner = adaptive.Runner(learner, executor, goal=lambda l: l.loss() > 2000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"adaptive.live_plot(runner)"
]
},
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Alternative executors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Often you will want to evaluate the function on some remote computing resources. `adaptive` works out of the box with any framework that implements a [PEP 3148](https://www.python.org/dev/peps/pep-3148/) compliant executor that returns `concurrent.futures.Future` objects."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### `concurrent.futures`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By default a runner creates a `ProcessPoolExecutor`, but you can also pass one explicitly e.g. to limit the number of workers:"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"from concurrent.futures import ProcessPoolExecutor\n",
"\n",
"executor = ProcessPoolExecutor(max_workers=4)\n",
"\n",
"learner = adaptive.learner.Learner1D(f, bounds=(-1, 1))\n",
"runner = adaptive.Runner(learner, executor=executor, goal=lambda l: l.loss() < 0.1)\n",
"adaptive.live_plot(runner)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### IPyparallel"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"import ipyparallel\n",
"\n",
"client = ipyparallel.Client()\n",
"# f is a closure, so we have to use cloudpickle -- this is independent of 'adaptive'\n",
"client[:].use_cloudpickle()\n",
"learner = adaptive.learner.Learner1D(f, bounds=(-1, 1))\n",
"runner = adaptive.Runner(learner, executor=client, goal=lambda l: l.loss() < 0.1)\n",
"adaptive.live_plot(runner)"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Advanced Topics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cancelling a runner"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sometimes you want to interactively explore a parameter space, and want the function to be evaluated at finer and finer resolution and manually control when the calculation stops.\n",
"\n",
"If no `goal` is provided to a runner then the runner will run until cancelled:"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"learner = adaptive.learner.Learner1D(f, bounds=(-1.0, 1.0))\n",
"runner = adaptive.Runner(learner)\n",
"adaptive.live_plot(runner)"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"runner.task.cancel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Debugging Problems "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Runners work in the background with respect to the IPython kernel, which makes it convenient, but also means that inspecting errors is more difficult because exceptions will not be raised directly in the notebook. Often the only indication you will have that something has gone wrong is that nothing will be happening.\n",
"\n",
"Let's look at the following example, where the function to be learned will raise an exception 10% of the time."
]
},
{
"cell_type": "code",
"execution_count": null,
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
"outputs": [],
"source": [
"def will_raise(x):\n",
" from random import random\n",
" from time import sleep\n",
" \n",
" sleep(random())\n",
" if random() < 0.1:\n",
" raise RuntimeError('something went wrong!')\n",
" return x**2\n",
" \n",
"learner = adaptive.Learner1D(will_raise, (-1, 1))\n",
"runner = adaptive.Runner(learner) # without 'goal' the runner will run forever unless cancelled\n",
"adaptive.live_plot(runner)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above runner should continue forever, but we notice that it stops after a few points are evaluated.\n",
"\n",
"First we should check that the runner has really finished:"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"runner.task.done()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If it has indeed finished then we should check the `result` of the runner. This should be `None` if the runner stopped successfully. If the runner stopped due to an exception then asking for the result will raise the exception with the stack trace:"
]
},
{
"cell_type": "code",
"execution_count": null,
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Logging runners"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Runners do their job in the background, which makes introspection quite cumbersome. One way to inspect runners is to instantiate one with `log=True`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"learner = adaptive.learner.Learner1D(f, bounds=(-1, 1))\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.loss() < 0.1,\n",
" log=True)\n",
"adaptive.live_plot(runner)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This gives a the runner a `log` attribute, which is a list of the `learner` methods that were called, as well as their arguments. This is useful because executors typically execute their tasks in a non-deterministic order.\n",
"\n",
"This can be used with `adaptive.runner.replay_log` to perfom the same set of operations on another runner:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"reconstructed_learner = adaptive.learner.Learner1D(f, bounds=(-1, 1))\n",
"adaptive.runner.replay_log(reconstructed_learner, runner.log)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"learner.plot().opts(style=dict(size=6)) * reconstructed_learner.plot()"
]
},
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Runners from a script "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Runners can also be used from a Python script independently of the notebook:\n",
"\n",
"```python\n",
"import adaptive\n",
"\n",
"def f(x):\n",
" return x\n",
"\n",
"learner = adaptive.Learner1D(f, (-1, 1))\n",
"\n",
"runner = adaptive.Runner(learner, goal=lambda: l: l.loss() < 0.1)\n",
"runner.run_sync() # Block until completion.\n",
"```\n",
"\n",
"Under the hood the runner uses [`asyncio`](https://docs.python.org/3/library/asyncio.html). You don't need to worry about this most of the time, unless your script uses asyncio itself. If this is the case you should be aware that instantiating a `Runner` schedules a new task on the current event loop, and you can simply\n",
"\n",
"```python\n",
" await runner.task\n",
"```\n",
"inside a coroutine to await completion of the runner."
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"language": "python",
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 1
}